£

RSX-11M-PLUS
Guide to Writing an I/O Driver
Order No. AA-H267B-TC

RSX-11M-PLUS Version 2.0

digital equipment corporation - maynard, massachusetts

First Printing, October 1979
Revised, March 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (<) 1979, 1982 by Digital Equipment Corporation
All Rights Reserved.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM~20 PDP

vT
DECUS PDT Bugunan
DECwriter RSTS

ZK2150

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-171Q DIRECT MAIL ORDERS {(CANADA)
In New Hampshire, Alaska, and Hawaii call 803-884-6660 Digitat Equipment of Canada Lid.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digita! Equipment Corporation

P.O. Box C52008 A&SG Business Manager

Nashua. New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with ihe local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

o ,{’?

CONTENTS
Page
PREFACE ix
SUMMARY OF TECHNICAL CHANGES xiii
CHAPTER 1 RSX~11IM-PLUS I/0 DRIVERS
1.1 VECTORS AND CONTROL AND STATUS REGISTERS 1-1
1.2 SERVICE ROUTINES . . . S £
1.2.1 Executive and Driver Layout B
1.2.2 Driver Contents . . e s e o s+ o « o o 1-4
1.3 EXECUTIVE AND DRIVER INTERACTION e 4 e o 2 e 2 e « 1-4
1.3.1 The Driver Process . « « « « o« o =« e e 4 s e o 1-4
1.3.2 Interrupt Dispatching and the Interrupt Control
Block .« « « o & . e + « o o a4 s e a s s e & 1-5
1.3.3 Interrupt Serv1c1ng and Fork Process « « « » « » 1-8
1.3.4 Nonsense Interrupt Entry Points+ . . . 1-9
1.4 ADVANCED DRIVER FEATURES . « ¢ o o & « o » s « = 1-10
1.4.1 Overlapped Seek I/0 . « ¢ o « « « ¢« « « & « o« 1-10
1.4.2 Dual-Access SUpPpPort .« « « o o + o o o = » o » 1=-11
1.4.3 Delayed Controller AcceSS . « o « o« o « + « « 1-11
1.4.4 Controller Reassignment and Load Sharing . . . 1-11
1.4.5 Common Interrupt Dispatching 1-12
1.4.6 Subcontroller Devices . « o« o « « « o o + « « 1-13
1.4.7 Full Duplex Input/Output « + + « & » o« 1-13
1.4.8 Buffered Input and Output . . . « . « « +» « . 1-14
1.4.9 I1/0 Queue Optimization « « . « « . . 1-14
1.5 DISTRIBUTED I/0 v « « o o o« o s o« s o o o o« o« o« 1-16
1.5.1 UNIBUS Run Mask . « & « 4 o o « « o « » » » « 1-16
1.35.2 Conditional FOrk « « « « o o o o » o s o o « o« 1-17
1.5.3 Processor-Specific Functions . o e e s o+ o 1-17
1.6 OVERVIEW OF INCORPORATING A USER—WRITTEN DRIVER
INTO RSX~1IM=PLUS 4 « « &« = o« s o s s o o o « « 1-18
1.7 SPR SUPPORT + v o« o« o o o s o o o o o o o « « o« 1-20
CHAPTER 2 DEVICE DRIVER I/0 STRUCTURES
2.1 I/0 STRUCTURES &+ & 4 o o o o s o o « ¢ o s « o + « 2=1
2.1.1 Controller Table (CTB) &+ « o o o« « » o« s o + o o« 2-1
2.1.2 Controller Request Block (KRB) .« « « « « & +» « o 2-1
2.1.3 Device Control Block (DCB) + &« & o o o o o o o o 2=2
2.1.4 Unit Control Block (UCB) &+ « o« o o « o = » o o » 2-3
2.1.5 Status Control Block (SCB} « « & a ¢« o « « o « o 2-3
2.2 DRIVER DISPATCH TABLE (DDT) e e 4 s s s s a2 e « & 2-4
2.2.1 I/0 Initiation & « « & « & o o o ¢ o o « o o o & 275
2.2.2 Cancel I/0 v o o o + o s « s o o o o s « o o« o « 2=5
2.2.3 Device TimeouUt . « « « o s s o o « s o o o s o o 2=5
2.2.4 Device Power Failure . . « o, « o o &+ o » = « + o« 2-6
2.2.5 Controller and Unit Status Change 2-6
2.2.6 Device Interrupt Addresses . . . « « « « « + o« o« 2-6
2.3 TYPICAL CONTROL RELATIONSHIPS . « &+ ¢ « » o s « o« 276

iii

CONTENTS

Page
2.3.1 Multiple Units per Controller, Serial Unit i
Operation . . v e e e s 6 a2 s e s s s s s o = 2=7
2.3.2 Single Controller, Serial Operation 2-7
2.3.3 Parallel Unit Operation . . « ¢« v &« o« « « « « « 2-8
2.3.4 Multiple-Access (Dual-Access) Operation 2-90
2.4 OVERVIEW OF DATA STRUCTURE RELATIONSHIPS 2-10
CHAPTEP 3. EXECUTIVE SERVICES AND DRIVER PROCESSING
3.1 FLOW OF AN I/O REQUEST . 4 & & « 2 « o o o « & o « 3-1
3.1.1 Predriver Initiation Processing e s+ e o o o s o 3-2
3.1.2 Driver Processing « o« o o « 3-4
3.2 EXEC_TIVE SERVICES AVAILABLE TO A DRIV“R e ¢« s o o 3-5
3.2.1 Get Packet (SGTPKT) + o o ¢ o 2 5 s e s o « o « 3=-5
3.2.2 Interrupt Save {(SINTSV) .+ & o« ¢ 5 » o« % o o o « 3=-5
3.2.3 Create Fork Process ($SFORK) e e s+ s e e s o & « 36
3.2.4 I/0 Done (SIODON or SIOALT) e « o o o o s a2 e s 3-6
CHAPTER 4 PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER
4.1 PROGRAMMING STANDARDS . . ¢ & ¢ o s o o o o o o o 4-1
4.1.1 Programming Protocol SUMMArY « +« « « « o o o« » o 4-1
4.1.2 Accessing Driver Data Structures . . . 4-2
4,2 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA
BASES o . . - . e ¢« o o 4=2
4.2.1 General Labellng and Orderlng of Data Structures 4-2
4.2.2 Device Control Block Labeling « « . . . 4-3
4.2.3 Unit Control Block Ordering e o+« o 4-3
4.2.4 Status Control and Controller Request Blocks . o 4-3 o
4,2.5 Controller Table . + ¢ ¢ o & ¢ o o o & « « » . 4-3
4.3 OVERVIEW OF PROGRAMMING USER~WRITTEN DRIVER CODE . 4-4
4.3,1 Generate Driver Dispatch Table Macro Call - DDTS 4-4
4.3.2 Get Packet Macro Call - GTPKTS + + « +« « & o « « 4-6
4,3.3 Interrupt Save Macro Call - INTSVS 4-8
4.3.4 Usage of UCBSV Argument in Macro Calls 4-8
4.3.5 Specifying a Loadable Driver e o« o« 4-9
4.3.6 Loadable Driver Entry Points for LOAD and UNLOAD 4-9
4.4 DRIVER DATA STRUCTURE DETAILS . . & o o o « « o 4-10
4.4.1 The I/0 Packet . . & ¢ v & o ¢ o o o o o o o« o 4-11
4,4.2 The QIO Directive Parameter Block (DPB) e ¢« » 4-14 e
4.4.3 The Device Control Block (DCB) +v v« v « o« « « o 4-16
4.4.3.1 Establishing I/0 Function Masks 4-22
4.4.4 The Unit Control Block (UCB) . + ¢« ¢ « « o o« o 4-27
4.4.5 The Status Control Block (SCB) ¢ ¢ & ¢ « « « - 4-37
4.4.6 The Controller Request Block (KRB} « « ¢« « « . 4-45
4.4.7 Continuous Allocation of the SCB and KRB . . . 4-53
4,.4.8 Controller Tablz (CTB) v 2 o o « « o o & « « 4-53
4.5 DRIVER CODE DETAILS . . o o « o s s s o« o« « « « 4-59
4.5.1 Driver Dispatch Table Format . . « ¢ « « « « « 4-60
4.5.2 I1/0 Initiation Entry Point . . ¢« + &« &« « + « « 4-63
4.5.3 Cancel Entry Point . . . + ¢ ¢ ¢« &« &+ &« & &« « o 4-64
4.5.4 Device Timeout Entry Point . . . +. . + « « . . 4-65
4.5.5 Next Command Entry Point . . . « « « &+ &+ & « o 4-65
4.5.6 Queue Optimization Entry Point 4-65
4.5.7 Deallocation Entry Point . « & ¢« « ¢« o ¢ « « « 4-66
4.5.8 Power Failure Entry Point « + ¢« . o . 4-66
4.5.9 Controller Status Change Entry Point 4-66
4.5.10 Unit Status Change Entry Point 4-68
4.5.11 Interrupt Entry Point « ¢« « « 4-69 s
4.5.12 Volume Valid Processing . ¢« ¢« o« ¢ ¢ ¢ o« o« « « 4=-70

iv

iy

yﬂ%“‘u‘f}

CHAPTER

CHAPTER

CHAPTER

CONTENTS

Page
5 INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS
5.1 GUIDELINES FOR INCORPORATING A DRIVER 5-1
5.1.1 Incorporating a Driver at System Generation . . 5-1
5.1.2 Incorporating a Loadable Driver with a Loadable
Data Base After System Generation 5-2
5.2 WHAT THE SYSTEM GENERATION PROCEDURE DOES FOR YOU 5-3
5.2.1 Assembling the Driver and Data Base 5-3
5.2.2 Inserting the Driver and Data Base Modules in
the LIbrary .« « ¢ ¢« o o o o o « o « o« s s o+ o » 5-4
5.2.3 Task Building the Driver . . ¢ + ¢« « ¢« + « « + . 5-4
5.2.4 Loading the Driver . . « o + « o o s o o o s « &« 5-5
5.2.5 Making the Devices Accessible ¢« ¢« . « . 5-6
5.2.5.1 Setting Vector and CSR Assignments 5-6
5.2.5.2 Placing a Controller and Units(s) On-Line . . 5-7
5.2.5.3 CSR and Vector Assigment Errors 5-8
5.3 USER~-SUPPLIED DRIVER SYSTEM GENERATION DIALOGUE
SUMMARY » [. - . . . 5—9
5.3.1 Choosing Executive Options « ¢« « « « . « 5-9
5.3.2 Choosing Peripheral Configuration 5-=10
5.4 LOAD PROCESSING .+ 4 ¢ o + 2 o o o a o o o« 2« s o« B5=11
5.4.1 LOAD Operations and Diagnostic Checks 5-11
“.4,2 Use of /CTB in LOAD . « « & o« « « « s a » o » 5-14
6 DEBUGGING A USER-SUPPLIED DRIVER
6.1 CRASH DUMP ANALYSIS SUPPORT ROUTINE . . . « « « « 6-1
6.2 THE EXECUTIVE DEBUGGING TOOL . . + o o o + o ¢ « » 6-1
6.2.1 XDT CommandsS o« ¢ « o o o = o o o o s o o« » = « » 6=-2
6.2.2 XDT Start UP v o « o o o o o s 5 « o s o« s o« » o 6=2
6.2.3 XDT Restrictions . . « ¢ ¢ ¢« &« ¢ ¢ ¢ ¢ ¢« ¢ &« » « 6-3
6.2.4 XDT General Operation « +« o+ . 6-4
6.2.5 XDT and Debugging a User-Supplled Drlver e +« o . 6-4
6.3 FAULT ISOLATION . & ¢ « s s s o s o« s o s o s o o 6=5
6.3.1 Immediate Servicing . +« & ¢« & 4« ¢ ¢ 4 o o o+ « o 6-5
6.3.1.1 The System Traps to XDT . . ¢« ¢« &« o« « &« « » o« 6-6
6.3.1.2 The System Reports a Crash « « . « . . 6-6
6.3.1.3 The System Halts but Displays No Information . 6-6
6.3.1.4 The System Is in an Unintended loop 6-6
6.3.2 Pertinent Fault Isolation Data . . « ¢« « &« & « . 6-7
6.4 TRACING FAULTS 4+ ¢ s o « o« o« s o o o o o o s s o o 6=7
6.4.1 Tracing Faults Using the Executive Stack and
Register DURP . 4+ 4 « o o « o s o s o« s « » » 6=10
6.4.2 Tracing Faults When the Processor Halts Without
Display . « ¢ o« ¢« o o« » e s 4 4 s e s o s« B-11
6.4.3 Tracing Faults After an Unlntended Loop .« . . 6-12
6.4.4 Additional Hints for Tracing Faults 6-12
6.5 REBUILDING AND REINCORPORATING A LOADABLE DRIVER 6-13

~3

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

SYSTEM-STATE REGISTER CONVENTIONS . . o &« & « o &
THE ADDRESS DOUBLE WORD e o s s s s e
DRIVERS FOR NPR DEVICES USING EXTENDED MEMORY . .
Calling $STMAP and $MPUBM or $STMP1 and $MPUB1 .
Allocating a Mapping Register Assignment Block
Calling $STMAP or SSTMPl . . + &« ¢ « & = + o =
Calling SMPUBM or SMPUBl . . . ¢ ¢ &« o « « o &
Calling SASUMR and SDEUMR . . . &+ ¢ o » o o «
Statically Allocating UMRs During System
Generation .« .+ 4 + ¢ ¢ o © o o & o o @ o e 2 e s
SERVICE CALLS . &« & ¢ o s « o o o o o o s s o o @
Address Check . « ¢ ¢ o o o o o o o o s o s o o

* * &
w N -
NSNS NN NN
I

|
W W W W N

BRSNS R R B
¢« o .

. e »
W W W W

« v e 0 s 0

WN b
|

1~
. .

B b

.

[
RN
|
Ui

CONTENTS .
Page

.4. Allocate Core Buffer e s+ e o o e o o » 71-8
.4, Assign UNIBUS Mapping Regzsters ¢ o e s o s s o 19
.4. Check Logical Block . & &+ o ¢ o « « o ¢ « o « 7=10
- 4. Move Block of Data . « « o o o & s o « o o » &« =11
4. Check I/0 Buffer . ¢« « ¢ o o o a o o o o« o o o 1=12
.4, Clock Queue Insertion .+ . ¢ o« & o« o s & o« » o 7=13
. 4. Convert Logical Block Number . . .« « . « +» « « 7-14
. 4. Deallocate Core Buffer s e e s o« o« o 7=15
.4, Deassign UNIBUS Mapping Reglsters « s e e o o« 1-16
.4. Device Message Qutput . « ¢« o « o « = o o o » 1=17
.4. FOrK & ¢ ¢« o o « o o o o s o o s s o » o o« » o« 1-18

Forkl o ¢ ¢ o o o o o + o o o &+ 5 s o« o & o« « 1-19

Get BYEE® o &« o s o o o o o o o o s o s o » » « 1-20
Get Packet e o o s s e s s s o s« 1-21
Get Word . . - - » . * . ° - . . . - Y . . - - 7-23
Initiate I/0 Buffering . + « o ¢ o o o o « o o« 1-24
Interrupt SAVe .+ + ¢ « ¢ 2 s o & s o o o o & o 1=25
Interrupt Exit . . . c o s 2 s e s s e o » 1-26
I/0 Done Alternate Entry and 1/0 Done ., . . . 7-27
I/JO Finish o o 4 & o ¢ o o o o o« « o o« » o « « 1-28
Map UNIBUS to Memory e s e« 1=29
Map UNIBUS to Memory (Alternate Entry) « o o o 1-30
PUt BYEE@ « & « 2 s = o s o o o« o s s « o o o« o 7=31

s e &
o o

WWWNNDNNDNNNNNNDND R R BRERERODOS U D WK

N OOWOINAUMPBPWNNHOYWOIATUMILDWNDHO

* e @
s & @

« o
* e e

. - Put Word - 3 - * . - ° * » - » 3 - . . - 7'32
. 4. Queue Insertion by Prlorlty e ¢ ¢ o o & o « o 1-33
.4, Relocate « « « o e o & s & o s & e & o » e« o 1-34

Relocate UNIBUS Phy51cal Address « « « » + o » 7=35
Queue Kernel AST to Task « o ¢ o 4 o o o o & o« 1=36
Set Up UNIBUS Mapping Address . . . 7=327
Set Up UNIBUS Mapping Address (Alternate Entry) 7-38
Test if Partition Memory Resident for Kernel

AST . ° . . ® . 3 . O - s ° e ° ° . 7_39
7.4.33 Test for I/0 Buffering . . + + o « « o o« » o « 71-40

* o s

Lo = i S I T R LS o A S & Y A A SR L A S RS S R N NN CN A N

e B e B B B B B B e e B e I e B B B e B e e R e U I R RO B |
» e

.
s

CHAPTER 8 SAMPLE DRIVER CODE
8.1 SAMPLE DRIVER DATA BASE « ¢ « ¢ « + « o o« « s o« » 8-1
8.2 SAMPLE DRIVER LODE . . - . ® . ® » . 3 . 3 - o . 8-3
8.3 HANDLING SPECIAL USER BUFFERS s 2+ o e s e e o o« 8-12

APPENDIX A R5X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC

DEFINITIONS

APPENDIX B CONVERTING A USER~SUPPLIED RSX~-11M DRIVER
B.1 ASSUMPTIONS AND GENERAL APPROACH . . « . « & o « o B-1
B.2 MODIFYING THE DATA BASE CODE . . « +¢ « « « « o « o B-1
B.2.1 Unit Control Block Changes . « « « o « ¢ o« o o o« B=2
B.2.2 Status Control Block Changes « « &+ « « « « o o« « B-2
B.2.3 The Controller Table . . & « &+ o « o « s ¢« « o » B-3
B.3 MODIFYING THE DRIVER CODE . & o o + 2 o« » » o« » o B-4
B.3.1 Conditional SymbolS . +« ¢ o o o o = « « o « o« » B-4
B.3.2 Controller—-Dependent Code . . & « » s & » o« « » B-4
B.3.3 Driver Dispatch Table . . . « ¢« « ¢ « « « « « » B-4
B.3.4 Reconfiguration Support . . « ¢ « ¢ « &« o « + « B-5
B.3.5 Volume Valid Processing . « + ¢« ¢« o o« o« » o o « B=5
B.3.6 Converting Logical Block Numbers B-6
B.3.7 Interrupt Entry Processing . « « + « « « ¢« « « « B-6

INDEX

vi

CONTENTS

Page
FIGURES

FIGURE 1-1 Virtual to Physical Mapping for the Executive . . 1-3
1-2 Interrupt Dispatching for a Resident Driver . . . 1-5
1-3 Interrupt Dispatching for a Loadable Driver . . . 1-7

1-4 Interrupt Dispa*tchiig for Common Interrupt
DeviCes . o 2 o o o o s s 2 s « o o« o « = s « « 1-12

2-1 Mul.iple Units per Controll~r, Serial Unit
Operation . . e s s e & s e & s e s s e+ e « o o 2-8
2-2 Single Controller, Serial Operation 2-9
2-3 Parallel Unit Operation (Overlapped Seek) 2-8
2-4 Dual-Access Operation . . ¢« « &+ ¢ 2 &« o o « « » 2-10
2-5 Composite I/0 Data Structures . . . + o ¢ « « o 2-12
4-1 I/0 Packet Format e o o o 2 s« 4-11
4-2 QIO Directive Parameter Block (DPB) e e 4« o« 4-15
4-3 Device Control Block . . + & ¢ « o« o « o o o » » 4-17
4-4 D.PCB and D.DSP Bit Meanings . . +« « &+ o & « « » 4-22
4-5 Unit Control BloC% . . ¢ o o« « o « « o o o« s « » 4-28
4-6 Unit Control Byte . « & &+ & o « o o o s o « « o 4=29
4-7 Unit Status Byte « 4 « ¢ o« . « 2 . o o o s « 2 » 4-31
4-8 Unit Status Extension 2 . . e o s o & o s « o 4-32
4-9 Status Control Block . + + « & ¢ & & o « & « « « 4-38
4-10 Controller Status Extension 3 « + « «» . 4-41
4-11 Controller Status Extension 2 . + . « « « 4+« « . 4-43
4-12 Controller Request Block . « &« « « & ¢ ¢ ¢« « « . 4-46
4-13 Controller Status Word . . « ¢« ¢ o « o « o « »«» « 4-48
4-14 Continuous KRB/SCB Allocation . « « ¢ « o « » « 4-54
4-15 Controller Table . . « « « « ¢« & . . . 4-55
4-16 Common Interrupt Table and Table of DCB Addresses 4-57
4-17 Controller Table Status Byte +« + « « « » 4-58
4-18 Driver Dispatch Table Format ¢« « « « . 4-61
4-19 Sample Interrupt Address Block in the DDT ., . . 4-63
6~1 Interaction of Task Header Pointers 6-8
6~-2 Task Heade@r .+ o o o o o o » o ¢ o s o o s s s« » « 6=9
6-3 Stack Structure: Internal SST Fault 6-10
6-4 Stack Stucture: Abnormal SST Fault « . . 6-11
6-5 Stack Structure:Data Items on Stack 6~-12
7-1 Mapping Register Assignment Block 7-4
B-1 Contiguous KRB/SCB for DLDRV . . +« 4 &+ « &« « « « o« B=3
B-2 Controller Table (CTB) for DLDRV « « « &« « B=3
B-3 Register Pass Routine (REGPAS) e a2 s s s s » o « B=5
B-4 Typical Handling of Volume Valid . . e o « = « « B=5
B~5 RSX~11M Logical Block Number Conver51on . « + « B-5
B-6 RSX-11M-PLUS Logical Block Number Converszon « o o« B-6

TABLES

TABLE 4-1 System Macro Calls for Driver Code . . . « « « « . 4-5
4-2 DDT$ Macro Call ArgumentsS . <« « ¢ o « « o s« » « o 4-5
4-3 GTPKTS Macro Call ArgumentsS . « « = o « o o » « o« 4-7
4-4 INTSVS Macro Call Arguments . « « « ¢« o o o« « » o« 4-8
4-5 Mask Values for Standard I/0 Functions 4-23
4-6 Mask Word Bit Settings for Disk Drives 4-24
4-7 Mask Word Bit Settings for Magnetic Tape Drives 4-25
4-8 Mask Word Bit Settings for Unit Record Devices . 4-26
4-9 Labels Required for the Driver Dispatch Table . 4-60
4-10 Standard Labels for Driver Entry Points 4-62
7-1 Summary of Executive Calls for Drivers 7-5
A-1 Summary of System Data Structure Macros A-l

vii

oy

ke

PREFACE

MANUAL OBJECTIVES

The primary goal of this manual is to introduce RSX-11M-PLUS physical
I/0 concepts, define Executive and I/0 service routine protocol,
describe system I/0 data structures, and prescribe I/0 service routine
coding procedures. This information is in sufficient detail to allow
you to:

e Prepare software that interfaces with the Executive and
supports a conventional I/0 device

e Incorporate the user-written software into an RSX-11M-PLUS
system

e Detect typical errors that cause the system to crash

e Use Executive service routines that an I/0 service routine
typically employs

A secondary objective is to introduce advanced hardware and software
features and sophisticated Executive facilities, and to describe both
the conventional and advanced features of I/0 data structures and
mechanisms. Knowledge of advanced features should facilitate the
understanding of conventional I/0 processing and eliminate some of the
confusion inherent in seeing data structures without knowing their
usage.

The manual does not describe how to write software that incorporates
advanced driver features. The only complete package of such
information is DIGITAL-supplied software, such as DVINT.MAC and
DBDRV.MAC (for overlapped seek, dual access, and common interrupt
handling); IOSUB.MAC and TTDRV.MAC (for full duplex 1I/0); and
MMDRV.MAC (for subcontroller device operation). The manual also does
not describe how to attach hardware to the PDP-11, how to perform
diagnostic functions to uncover hardware faults, nor how to
incorporate DIGITAL-standard error~reporting functions in user-written
software.

INTENDED AUDIENCE

This manual is written for the senior-level system programmer who is
familiar with the hardware characteristics of both the PDP-11 and the
device that the user-written software supports. The programmer should
also be knowledgeable about DIGITAL peripheral devices and experienced
in using the software supplied with an RSX-11M-PLUS system. The
manual neither describes general Executive concepts nor defines
general system structures. The manual does describe I/O concepts, the
Executive role in processing I/0 requests, and some pertinent aspects
of I/0 processing done by DIGITAL-supplied software. Therefore, with

ix

PREFACE

a firm understanding of hardware characteristics and real-time system
software, a senior-level system programmer should be able to
appreciate how user-written software interfacing with the Executive
can affect overall system performance.

STRUCTURE OF THIS DOCUMENT

This document is structured to be self-contained so that you need not
refer to any other manual to build and incorporate a user-written
driver into your system. The manual has three types of information:
conceptual, procedural, and reference. The following are abstracts of
the chapters in the document:

e Chapter 1, "RSX-~11M-PLUS I/0 Drivers," introduces terms and
concepts fundamental to understanding physical I/0 in
RSX-11M-PLUS, and describes the protocol that a driver must
follow to preserve system integrity. It summarizes advanced
driver features and RSX-11IM-PLUS capabilities helpful in
becoming acquainted with overall Executive and driver

interaction.

e Chapter 2, "Device Driver 1I/0 Structures," continues the
conceptual discussion begun in Chapter 1. It introduces on a
general level the software data structures involved in
handling I/0 operations at the device level; examines typical
arrangements of data structures that are necessary for
controlling hardware functions; and presents a macroscopic
software configuration that summar izes the logical
relationships of the I/0 data structures.

e Chapter 3, "Executive Services and Driver Processing,®™ ends
the conceptual presentation. It summarizes how an I/0 regquest
originates; how the Executive processes the request; and how
a driver would use Executive services to satisfy an I/0
request.

e Chapter 4, "Programming Specifics for Writing an I/0 Driver,"”
provides the detailed reference information necessary to code
a conventional I/0 driver. Included is a summary of
programming standards and protocol; an introduction to the
programming facilities and requirements for both the driver
data base itself and the executable code that constitutes tha
driver; and an extensive elaboration of the driver data base
and of the driver code.

® Chapter 5, "Incorporating A User-Supplied Driver into
RSX~-11M-PLUS," supplies the procedural information that you
need to assemble and build a loadable driver image, load it
into memory, and make accessible the devices that the driver
supports. Also included are a summary of the system
generation dialogue concerning including user-supplied drivers
and a description of the loading mechanism and the diagnostic
operations performed during loading.

e Chapter 6, "“Debugging A User-Supplied Driver," summarizes
software features provided to help vyou uncover faults in
drivers and gives procedures to follow that might prove
successful in isolating faults in drivers.

e Chapter 7, "Executive Services Available to An I/0 Driver,"
gives general coding information relating to the PDP-11 and
RSX~-11M~-PLUS Executive service routines.

PREFACE

e Chapter 8, "Sample Driver Code," shows the source code for the
data base and driver of a conventional device and an excerpt
of source code from a driver that handles special user
buffers.

e Appendix A, "System Data Structures and Symbol Definitions,"
lists the source code of system macro calls that define system
device structures, driver-related structures, and system-wide
symbolic offsets needed to access those structures,

e Appendix B, "Converting a User-Supplied RSX-11M Driver,"
describes the modifications that you must make to enable an
RSX~11M user-supplied driver to run on an RSX~11M-PLUS system.

ASSOCIATED DOCUMENTS

Accompanying your RSX~11M~PLUS system are documents that describe both
the software and hardware on the system. The software documents are
listed and described in the RSX-11M-~PLUS Information Directory and
Index. Consult the directory for concise summaries of

software-related publications. Processor and peripherals handbooks

sumrarize hardware information published in wvarious maintenance,
installation, and operator manuals that are provided with your system.

xi

SUMMARY OF TECHNICAL CHANGES

This revision of the RSX-11M-PLUS Guide to Writing an I/0 Driver
incorporates the following technical changes and additions:

1.

2 -

3 -
P

4.
Fla

5 .

6.

7 .
- 8.

Two new arguments (BUF and OPT) have been added to the DDT$
macro call in Chapter 4.

The I/0 Function Masks for Mass Storage, Magtape, and Unit
Record Devices have been added in Chapter 4.

Additions have been made to the UCB in Chapter 4 as follows:

e A new symbolic name U.MUP has been added (redefinition of
U.CLI)

e The DV.MXD offset to U.CWl has been renamed to DV.MSD for
mass storage.

e U.UCBX has been added for mass storage errorlogging
devices.

New status control block extension bit definitions (S2.0PT,
$2.0P1, S2.0P2, and S3.0PT) have been added to the SCB in
Chapter 4.

New controller bit definitions (KS.MOF, KS.EXT and KS.SLO)
have been added to the KRB in Chapter 4.

The Queue Optimization entry point, Deallocation entry point
and the Next command entry point have been added to Chapter
4.

New tracing faults of $HEADR have been added to Chapter 6.
Some Executive routines listed in Chapter 7 have been moved
to new Executive modules and 12 have been added. The
following is a list of the affected modules and subroutines,
plus the additions:

Routine 01d Module New Module

SACHKB I0SUB EXSUB
SACHCK I0SUB EXSUB
SASUMR I0SUB MEMAP
$BLKCK I0SUB MDSUB
$BLKC1 {new) MDSUB
$BLKC2 {new) MDSUB
$BLXIO (new) BFCTL
SCKBFI {(new) EXESB
SCKBFR {new) EXESB
SCKBFW {new) EXESB
$CKBFB {new) EXESB
$CVLBN 10SUB MDSUB
$DEUMR I0SUB MEMAP

xiii

SUMMARY OF TECHNICAL CHANGES

Routine

SINIBF
SMPUBM
SMPUB1
SRELOC
SRELOP
SREQUE
SREQU1
$STMAP
$STMP1
STSPAR
STSTBF

01é Module

{new)}
I108UB
I0SUR
I0OSUB
108UB
{new)
{new)
I10SUB
I105uB
{new)
(new}

xiv

New Module

I0SUB
MEMAP
MEMAP
MEMAP
MEMAP
IosuB
I0SUB
MEMAP
MEMAP
REQSB
I0suB

‘ 4_:%&%

CHAPTER 1

RSX~-11M-PLUS I/0 DRIVERS

Device drivers on RSX-11lM-PLUS are the primary method of interfacing
Executive software with hardware attached to the computer. Most
DIGITAL-supplied hardwarel is supported by drivers accompanying the
remaining software that the wuser receives. with the system. This
chapter introduces the concept of device drivers and explains driver
operations and features.

1.1 VECTORS AND CONTROL AND STATUS REGISTERS

A device controller has a unique address on the PDP-11 UNIBUS that
identifies itself and distinguishes it from other hardware attached to
the computer. At this unique address is usually a control and status
register (CSR) containing data elements that allow software to operate
and interrogate the related device. The CSR resides in physical
address space that is reserved for device registers and is referred to
as the I/0, or peripheral, page. Other registers associated with the
device are placed in contiguocus addresses lower and/or higher than the
CSR address. Software usually controls a device by accessing the CSR
to enable interrupts, initiate a function, and respond to the
resulting interrupt to continue or finish the function.

Associated with many devices can be one or more 2-word areas called
interrupt vectors. A vector provides a connection between the device
and the software that services the device. A vector allows a device
to trigger certain software actions because of some external condition
related to the device., When ~ device interrupts, it sends the
processor the address of the interrupt vector. The first word of the
interrupt vector contains the address of the interrupt service routine
for that device. The processor uses the second word of the vector as
a new Processor Status Word. Thus, when the processor services the
interrupt, the first word of the vector is taken as the new Program

Counter (PC} and the second word is the new PS.

Space is reserved on the PDP-11 for the interrupt vectors. This space
is in the low part of Kernel I-space. The vectors are considered to
be in Kernel mode virtual address space and are thus mapped by the
Executive. Because the interrupt vector 1is in Kernel space, the
Executive receives control of the processor on every interrupt. On a
multiprocessor system, each central processor unit has its own vector
space,

1. The CINTS directive enables a privileged task to gain control when
a device interrupts and thereby to access device registers. The
K-series Laboratory modules use this feature to perform I/0. The
CINTS directive is a secondary but egqually viable method of
interfacing software to hardware.

1-1

RSX-11N~-P".US I/0 DRIVERS

1.2 SERVICE ROUTINES

The service routine that is entered to process an interrupt is most
frequently in the device driver. Device drivers vary in complexity
depending on the capabilities of the type of device and the number of
device units they service. A driver can reside with the Executive
itself or can be separated from it. The former driver is resident and
the latter is loadable,

The distinction between resident and loadable drivers is mainly one of
flexibility. A resident driver is built in during system generation
as a permanent part of the Executive.l It resides in the Executive
address space and cannot be removed. A resident driver responds to
interrupts slightly faster than a loadable driver. Although 1linked
into the Executive structures, a loadable driver resides in memory
outside the virtual address space of the Executive. A user can add or
remove a loadable driver by means of an MCR or VMR command. 1In
addition, any driver not required for a period of time need not be
loaded. The space normally occupied by the unloaded driver can hold
user tasks or another driver. On a system without Executive data
space support, making a driver loadable frees virtual space in the
Executive which can be used for additional pool.

1.2.1 Executive and Driver Layout

A device driver is a logical extension of the Executive that need not
be contiguous in physical memory with the Executive code. Active Page
Registers (APRs) 0 through 4 map the Executive, whereas APR 7 is
reserved to map the I/0 page.2 Resident drivers are mapped within the
Executive space. Loadable drivers reside in a separate partition of
memory and are mapped by APR 5. Therefore, a loadable driver is by
default restricted to the 4K words of space mapped by APR 5 unless it
controls its own mapping with APR 6 to gain access to an extra 4K
words.

The virtual to physical mapping on a system with Kernel data space
support is shown in Figure 1-1.

Virtual addresses 0 through 4K words (APR 0) of I and D space overmap
the same physical memory. The mapped area contains the interrupt
vectors, processor stack, processor-specific memory locations, and
interrupt control block (ICB) pool space as well as some Executive
code. I-space virtual addresses 4K through 20K words (APR1 through
APR 4) map the remaining Executive code, which is therefore limited to
16K words. D-space virtual addresses 4K through 20K words (APR 1
through APR 4) map the dynamic storage region (or pool) and system
data structures to a maximum of 16K words.

1. On systems with Executive data space support, all drivers must be
loadable.

2. Active Page Register is a term referring to the KT1ll Memory
Management register pair (Page Address Register (PAR) and Page
Descriptor Register (PDR).) Refer to the relevant processor handbook
for information on hardware mapping and memory management. Refer to
the RSX-11M/RSX-11M-PLUS Task Builder Manual for a description of
mapping and APR assignments by software.

1-2

RSX~11M-PLUS I1/0 DRIVERS

Physical Memory
Address Space

1/Q Page
Virtual
Kernel
32K Words \ FSpace 32K Words
B — APR 7
28K Words Privileged Task N [28K Woards
Driver ’: : — e —
APR &
20K Words — — 20K Words
Processor n
Specific ! —_—— -
s e APR 1
4K Words Dvnamm‘ Storage e | Ak wWorgs
Region__ APR O
0K Words Systen Resident 0K Words
1/0 Data Base
Executive
Code
Processor O
Specific

1Dn multiple processor systems, each additional processor requires its own processor-specific area in the CPU partition.

2K-245-81

Figure 1-1 Virtual to Physical Mapping for the Executive

Virtual addresses 20K through 28K words (APR 5 and APR 6) of I and D
space overmap the same physical memory, which is reserved to map
loadable drivers and privileged tasks in Kernel mode. (Although APR5
and APR6 are reserved for drivers, the Executive maps only APR5 when
it calls a driver.) Finally, virtual addresses 28K through 32K words
(APR 7) of I and D space overmap the I/0 page.

Thus, a device driver is mapped with the Executive code and the 1I/0
page. When a driver has control, it can access the device registers
in the I/0 page to perform its operations. It also has available all
the Executive service routines to help it process I/0 requests.

Because of the layout of the Executive and device drivers, many common
functions related to I/0 are centralized in the Executive as service
routines. This commonality eliminates the inclusion of repetitive
coding in each and every driver. Coding in each driver is therefore
reduced to handling the specific functions of the device supported.

RSX-11M-PLUS I/0 DRIVERS

1.2.2 Driver Contents

A device driver consists of two parts. One part is the executable
instructions of the driver itself. This part has the entry points to
the driver. The entry points are those places where the Executive
calls the driver to perform a specific action, and their addresses are
established in the driver dispatch table (DDT). The table contains
addresses of routines in a fixed ordev so that the Executive can enter
the driver at the appropriate place for a given action.

The other part of a device driver is the data structures forming the
data base that describes the controllers and units supported by the
driver. Two structures, the controller table (CTB) and the controller
request block (KRB), .describe the controller of the device being
supported. Because the CTB supplies generic information about the
controlier type, only cne CTB need exist for each controller type on a
system. The KRB holds information related to a specific controller
and therefore each controller has its associated KRB.

Three structures in the driver data base--the device control block
(DCB), the unit control block (UCB), and the status control block
{(SCB)--describe the device as a 1logical entity. The DCB contains
information related to the type of device, whereas the UCB holds
information specific to an individual unit of the device. The SCB is
used mainly to store data (driver context) concerning an operation in
progress on the device unit.

The code of a driver must be in one continuous portion of main memory.
Because the Executive is designed to respond to real-time activities,
the driver code must run as fast as possible. Therefore, it cannot be

overlaid.

The driver data structures are tailored to the number of controllers
on the system, the number of units attached to each controller, and
the types of features the devices support. The structures increase in
complexity as the number of supported features increases.

1.3 EXECUTIVE AND DRIVER INTERACTION

The Executive and a driver interact by accessing and manipulating
common data structures. An I/0 activity typically begins when a task
generates a request for input or output. The Executive performs
preliminary processing of that request before it initiates the driver.

This preliminary processing, called predriver initiation, is common
for all drivers and eliminates a great deal of code from all drivers.

In performing predriver initiation, the Executive accesses the driver
data structures to assess the 1legality of the I/0 request. For
example, cells in the device control block (DCB) define the functions
that the driver supports. If the function specified in the I/O
request is not supported by the driver, the Executive need not c¢all
the driver. The driver is not aware of the 1/0 request. Therefore,
the Executive calls the driver only when the predriver initiation
warrants it.

1.3.1 The Driver Process

When the Executive does call the driver to process an I/O request, the
driver begins I/0 initiation. Once an I1/0 request is created, a
driver process is initiated. The Executive has queued to the driver
an 1/0 packet that must be processed to satisfy the request.
Potentially there exist on the system as many driver processes as

1-4

-m g‘%
J

sy,

RSX-~11M-PLUS I/O DRIVERS

there are distinct units capable of being active simultaneously.
(Moreover, some drivers supporting advanced features can have multiple
I/0 reqguests simultaneously active for a given unit. In this case,
each active I/0 request is part of a separate driver process. Refer
to Section 1.4.7 for more information.)

Central to a full understanding of a driver and the I/0 structure is
the difference between a driver process and the driver code. The
driver code, which is pure instructions, invokes an Executive routine
called SGTPKT to get an I/0 packet to process. This activity
generates data for the reguest being processed and the unit doing the
processing. The driver process, once initiated, starts the proper I/0
function, waits for a completion interrupt, posts I/0 status, and
requests another 1I/0 packet. This sequence of execution steps
continues until the I/0 queue is enpty. The driver process then
terminates.

Because a driver may be capable of servicing several I/0 requests in
parallel, it is ©possible that, for a single driver, many driver
processes exist at the same time. However, there is only one copy of
driver code. The driver process is reentrant code and the data that
defines the state of the code is stored in the driver data base when
the process 1is not executing (for example, when it is waiting for an
interrupt). The driver process executes driver code for a particular
device type on behalf of a specific unit. 1If independent units of a
particular device type are concurrently active, several driver
processes are also active at the same time, each with its own set of
data.

1.3.2 1Interrupt Dispatching and the Interrupt Control Block

Once a driver starts an I/0 function, it must await the I/0 completion
interrupt. When a device interrupt occurs, the processor pushes the
current PS and PC onto the current stack and loads the new P5 and PC
from the device controller interrupt vector. By convention, the PS in
the interrupt vector is preset with a priority of 7 and the number of
the controller associated with the vector. (The controller number is
in the low~order four bits.)

Because an interrupt must be serviced in Kernel address space, how the
interrupt is handled depends on whether the driver is resident or
loadable. A resident driver, being mapped with the Executive in
Kernel address space, handles the interrupt directly (that is, the
entry point address of the driver is the PC word of the interrupt
vector) . For a resident driver, then, the hardware dispatches
directly to the interrupt service routine in the driver. Figure 1-2
shows this mechanism.

- RESIDENT
CONTROLLER DRIVER
NUMBER
INTERRUPT
VECTOR

ZK-246-81

Figure 1-2 Interrupt Dispatching for a Resident Driver

RSX-11M-PLUS I/0 DRIVERS

When the interrupt service routine in the resident driver gains
control, it runs at priority 7, which locks out further interrupts.
The driver is therefore uninterruptable and, because the system must
respo?d to real-time events, processing at this level cannot take too
long.

To ensure that a driver does not lock out other interrupts on the
system or destroy the context of any interrupted process, a protocol
has been established. By system convention, no process should run at
an uninterruptable level for more than 100 microseconds. A common
Executive coroutine, called interrupt save ($INTSV), exists to lower
the priority 1level of the driver process to that of the interrupting
device and to save two registers of the interrupted process.
Therefore, by system convention, all resident drivers call the S$INTSV
coroutine, which saves the PS and extracts the controller number.
Because most instructions change the PS bits that encode the
controller number, under most circumstances the driver can do very
little else without saving the controller number.

The SINTSV coroutine saves two registers, R4 and R5, which are
thereafter free for the driver to use. These registers are typically
used by drivers to hold addresses of the data blocks containing unit
status and control information, the SCB and UCB. (Most Executive
routines assume these two registers hold pointers to the two
structures. If the driver needs to use more registers, it saves them
on the stack and restores them when it finishes.) When the interrupt
save coroutine returns to the driver, the driver runs at the interrupt
level of the device that it is servicing and has two free registers
that it can use. This protocol makes the driver partially
interruptable (that is, interruptable by devices with a higher
priority) and preserves the context of the interrupted process.

The driver may then run for a short interval at the partially
interruptable level. By convention, this interval should not exceed
500 microseconds. When the driver finishes processing the interrupt,
it may execute a RETURN instruction to transfer control back to the
coroutine which gives control of the CPU to the next process.2

For a loadable driver, the hardware cannot dispatch directly to the
interrupt service routine in the driver because the driver is mapped
outside the address space of the Executive. Therefore, some code in
the Executive must initially handle the interrupt, load the mapping
context of the driver, and dispatch to the proper driver. This code
resides in the Executive in a structure called an interrupt control
block (ICB)Y. Figure 1-3 shows this mechanism.

The ICB actually contains a JSR instruction to an Executive interrupt
save routine ($INTSI) and some data cells that enable the routine to

do the following:

® Save R4 and RS

® Save the Kernel mapping {APR 5)

1. On a multiprocessor system, a driver vrunning at priority 7 1is
interruptable by a device of the same type on another CPU. To handle
this situation, the driver being interrupted does not have to do any
special processing beyond what is described in this manual.

2. An Executive interrupt exit rout.ne, ,LNTXT, exists to standardize

the way a driver exits from an interrupt. However, on RSX-1IM~PLUS
systems this routine is simply a RETURN instruction.

i-6

RSX-11M-PLUS I/0 DRIVERS

e Load APR 5 to map the driver

e Transfer control to the driver

e Restore the mapping after return from the driver
e Restore R4 and RS

Thus, the interrupt vector for a controller serviced by a loadable
driver points to an ICB rather than to the driver. Accordingly, the
loadable driver does not (and must not) call the $SINTSV routine as the
resident driver does because the $INTSI routine saves the context on
behalf of the loadable driver. When it gains control, the 1loadable
driver is also partially interruptable as if it had called the SINTSV
routine. After it gains control, the loadable driver is exactly 1like
the resident driver. (That 1is, it must also observe the protocols
established on the system.)

i [INTERRUPT
CONTROL
CONTROLLER B(t.COBC}K
NUMBER
INTERRUPT LOADABLE
VECTOR DRIVER

ZK-247-81

Figure 1-3 1Interrupt Dispatching for a Loadable Driver

The ICB allows up to 128 controllers of the same type on a system.
The low-order four bits in the PS of the interrupt vector restricts
the number of controllers to 16. In the ICB, the system maintains a
controller group number and the PS bits describe the controller number
within the group. To obtain the real controller number, the Executive
interrupt service routine adds the controller group number in the ICB
and the controller number in the PS. (Note that, because a resident
driver does not use the ICB mechanism, there can be at most 16
controllers of one type if the driver is resident. Furthermore, only
the LOAD command in VMR supports more than 16 controllers of one

type.)

The simplest case in handling an interrupt is that in which a
controller can have only one unit active at any one time. Multiple
controllers may be active concurrently, vet only one unit per
controller may be active. When an interrupt occurs, the driver can
determine the number of the saved controller from information encoded
in the low-order four bits of the PS. The interrupt service routine
in the driver uses the number to index a table in the CTB and to
access the proper unit data and context.

The more complex case in dispatching an interrupt is that in which a
controller can have multiple units operating in parallel. This is an
advanced driver feature called overlapped seek I/O and is described in
Section 1.4.1.

RSX~-11M-PLUS I/0 DRIVERS

1.3.3 1Interrupt Servicing and Fork Process

A driver (whether resident or loadable) handling an interrupt and
operating at the partially interruptable level may need to (1) access
structures in its data base or (2) call centralized Executive service
routines which may access structures in the data base. Because a
driver may have more than one process active simultaneously, the
driver itself may need to access structures in the data base shared
among separate, unrelated processes. A method must exist to
coordinate access to the data structures shared among the processes
and the Executive.

The mechanism that coordinates access to the shared structures is
called the fork process. An Executive routine, called fork (SFORK) ,
causes the driver to be placed in a queue of processes waiting for
access to the shared data structures, to run at processor priority
level 0, and to be completely interruptable.l A driver must therefore
call the fork routine before it calls any other Executive service
routine (except for $INTSV), or before it accesses any device-specific
{(nonprivate) structures in its data base. If a driver doés not follow
this protocol, it will corrupt the system data base and will

eventually cause a system crash.

A driver that «calls the fork routine requests the Executive to
transform it into a fork process. The routine saves a snapshot of the
process in a fork block. The snapshot is the context of the driver
process--the PC of the process and the contents of R4 and R5. The
fork block itself resides in the I/0 data structure holding the status
information of the device being serviced (that is, the status control
block, or SCB). The Executive maintains a list of fork blocks in FIFO
order. A new fork block is added to the list after the last block in
the list.

When the driver calls $FORK, the CPU priority is lowered to 0, which
allows other interrupts to be serviced. When there are no more
pending interrupts (they have either been dismissed or the drivers
have called $FORK), the Executive checks to see whether the first
interrupt preempted a priority 0 Executive process., If a preemption
occurred, the Executive process 1is continued from where it was
interrupted. If no priority 1level 0 Executive process was
interrupted, the Executive executes the process at the head of the
fork list. The Executive restores the saved context of the process
from the SCB and returns control to the driver at the statement
immediately following the call to the fork routine. The process |is
unaware that a pause of indeterminate length has elapsed.

Fork processes thereby are granted FIFO access to the common I/0C data
structures, Once granted such access, a fork process has control of
the structures until it exits. The protocol guarantees that the
driver process has wunrestricted access to shared system data
structures. As one fork process exits, the next in the 1list is
eligible to run and access the data structures. Thus, the fork
mechanism allows both controlled access to the common data structures
and sufficient time to process an interrupt without locking up the

system.,

1. By convention, drivers may operate at a partially interruptable
ievel for no more than 500 microseconds. Some drivers conceivably
could need more time than this convention allows. Thus, an additional
reason for the fork mechanism is to preserve the response time of the
system and not lock out interrupts from lower-priority levels.

1-8

)

iy,
-

RSX-11M-PLUS I/0 DRIVERS

The status of a fork process lies between an interrupting routine and
a task requesting system resources. Interrupt routines are run first
and can be interrupted only by higher-priority interrupts. Processes
in the fork list run after other system processes either terminate or
call $FORK themselves. Because system processes save and restore
registers, a fork process can use all registers. The fork processes
are co?pletely interruptable. Tasks run only when the fork 1list |is
empty.

The fork mechanism establishes linear, or serial, access to the shared
data structures. For example, an Executive routine that completes I/0
processing ($IODON) manipulates the I/0O queue to deallocate an 1/0
packet that the driver processed. If multiple processes were allowed
to alter the queue at random times, the queue pointers could become
disarranged. Without the fork mechanism, any process could be
interrupted by a higher-priority process and not be able to complete
its manipulation. Because the Executive completes a currently active
fork process before it starts the next fork process in the queue, the
integrity of the 1I/0 data structures is maintained if all routines
that call $IODON run at fork level.

Between the time that a driver process calls $FORK and the Executive
starts the process at fork level, the driver cannot call $FORK again
for that same device. If the $FORK routine is called again before the
first process starts, context stored in the fork block for the first
fork process is overwritten. However, once a fork process starts, the
data in the fork block is stale and the process may call $FORK again
while it is at fork level. 1If the driver does not ensure against
unexpected interrupts, it may double fork as described above. As a
result of the double fork, the driver may either miss an interrupt
from the device or miss interrupts from several devices. As a further
consequence, code after the call to $FORK is executed twice for the
same context with generally catastrophic results. For example,
calling $IODON twice for the same I/0O packet eventually causes the
system to crash.

1f all drivers adhere to the interrupt protocol, the integrity of the
1/0 data structures is preserved. Thus, when a device interrupt
occurs while a fork process is executing, the protocol demands that
the service routine handling the interrupt not destroy any of the
registers. The registers are part of the context of the fork process.
After the driver dismisses the interrupt or itself becomes a fork
process, the interrupted fork process can safely resume execution with
its proper context. If any driver violates the protocol, the
integrity of the I/O data structures is endangered. (That 1is, the
system crashes in mysterious ways.)

1.3.4 Nonsense Interrupt Entry Points

All vectors for off-line devices and vectors for which there are no
devices contain the addresses of Executive nonsense interrupt entry
points. Code at these special entry points exists to properly dismiss

1. On a multiprocessor system, the fork list is not necessarily empty
when the Fxecutive returns control to a task. The Executive processes
only those fork blocks that are to run on the current processor. To
ensure that fork blocks remaining in the list are readily processed,
the Executive running on one processor interrupts {using the
interprocessor interrupt hardware) any other processor that has fork
blocks waiting for processing.

RSX~-11M-PLUS I/0 DRIVERS

unexpected interrupts from these devices. 1If error logging is active,
any unexpected interrupts are recorded as undefined interrupt errors.
This feature helps in detecting faulty hardware.

1.4 ADVANCED DRIVER FEATURES

Advanced drivers have certain optional and built-in special features.
This section introduces these features so that you can better
understand the structures described in the remainder of the manual.

l1.4.1 Overlapped Seek 1/0

Some disk devices allow multiple device units attached to the same
controller to execute operations in parallel. This 1is called
overlapped seek suoport and is a software option designed to take
advantage of a hardware feature found in most advanced disk drives.
This feature allows any or all drives attached to the same controller
to execute a seek function simultaneously. Each unit may perform a
seek operation .independent of what another unit may be doing. Only
one data transfer can occur at any one time. Some types of drives
allow seek functions to overlap a data transfer function, whereas
other types do not.

The increased difficulty for overlapped seek devices stems from
determining whether the controller or the unit generated the
interrrupt. Most control functions 1issued to the drive unit
{including the positioning commands SEEK and SEARCH) terminate with a
unit interrupt. The controller reports the physical wunit number of
the interrupting unit in its attention summary register. A controller
interrupt indicates the termination of a function (usually a data
transfer command) that changes the controller status from busy to
ready. Only one unit may issue a data transfer complete notification
to a particular controller at any one time because only one data
transfer can be in progress at any one time. Most hardware defers
seek termination interrupts until the current data transfer is
complete.

To handle interrupts for a device that supports overlapped seek
operations, a device-specific interrupt service routine built into the
Executive examines the device registers to determine whether the
interrupt was initiated by the controller or the drive unit. Using
the controller number retrieved from the PS in the interrupt vector,
the routine forms an index (called the controller index) to use as an
offset into a table of addresses in a structure (called the controller
table or CTB) in the I/0 data base. The routine accesses the table to
determine the address of the I/0 data structure of the controller
(called the controller request block or KRB) that generated the
interrupt. Accessing the KRB yields the address of the CSR of that
controller and having the CSR address allows the routine to examine
the device registers.

If the «controller itself initiated the interrupt, the routine
determines the data base structure of the unit that is active. This
determination is possible because such a controller interrupt relates
toc a termination of a data transfer, and only one such unit can be
active for a data transfer. A cell in the KRB has the address of the
data structure describing the active unit (the unit control block or
UCB). The routine can then determine the address of the driver
dispatch table and transfer control to the driver.

£ e

RSX-11M-PLUS I/O0O DRIVERS

If a device unit initiated the interrupt, the routine retrieves its
unit number from the Attention Summary Register. Using the physical
unit number, the routine indexes a table at the end of the KRB to
yield the address of the related UCB. The driver is entered through
the driver dispatch table.

1.4.2 Dual-Access Support

Some devices have multiple-access paths for both <c¢ontrel and data
transfer functions. Such devices are called dual access. A
dual-access unit is connected to two controllers at one time and may
be accessed from either <controller at the option of the system
software. Since a single device unit may have only one physical unit
number, a dual-access unit must have the same unit number for both
controllers. A dual-access unit may be accessed only from one port at
a time. The system supports dual-access operation for those devices
~quipped with the necessary hardware capability. This feature is most
useful on a multiprocessor system where each access path is to a
different central processor unit.

To support dual-access operations, the 1I/0 data structures must
reflect the existence of alternate controllers. Particularly, the
driver process context for I/0 on a unit can be associated with either
of two controllers. To decide which controller will provide access to
the drive unit, the driver must call an Executive routine to request
access to a particular controller. When the Executive grants access,
the driver process context for a unit is associated with the assigned
controller. A driver must have access to the assigned controller
before actually changing the registers in the I/0 page.

When a driver and a unit are given access to a controller, the
controller status is set to busy. The unit becomes the device owned
by the controller for the operation. A controller without an owned
unit 1is considered a free controller. By this ownership mechanism,
controller interrupts are sent to the correct unit for processing.
After the operation completes, the driver requests the Executive to
release the controller and thus frees it.

1.4.3 Delayed Controller Access

Drivers that support overlapped seeks also must request access to a
controller before executing a function on an independent unit and must
release access after completing the function. To take maximum
advantage of simultaneous operation of units on one controller, the
system delays controller access when the controller is busy.

The Executive maintains a request queue for the controller. Whenever
a driver process requests access to a controller and must wait for
access to the controller, the Executive places the associated fork
block in the ~controller request dueue. When a driver releases a
controller, the Executive automatically grants access to the next
driver process waiting for access. Precedence is given to positioning
requests over requests for data transfer. The controller request
queue thereby provides the means for the Executive to synchronize
access,

1.4.4 Controller Reassignment and Load Sharing

Controller assignment for dual-access devices is dynamic. If one port
(access path) to a device is busy, the system can request access on

1-11

RSX-11M-PLUS I/0 DRIVERS

the other port., This switching between ports allows the system to
share the load between the twe controllers.

NOTE

A dual-access device has both ports
attached to the same system. DIGITAL
does not support systems loosely coupled
through a peripheral.

The system also maintains an I/0 count for each controller to
determine how busy it 1is. If one controller is not as busy as the
other, the system can queue the access requests to the less busy
controller., Whenever load sharing is done on a dual-access unit, the
Executive makes any reassignment necessary before actually requesting
access to the controller.

1.4.5 Common Interrupt Dispatching

To handle interrupts from a controller that supports more than one
type of device, the Executive uses a mechanism called common interrupt
dispatching. The RH70 MASSBUS controller can have different types of
devices (RP04, RPO5, and RP06 moving head disks; RM02, RM03, RMQ5,
moving head disks; RMB80 and RP07 fixed media disks; ML11
non-rotating memory; RS03 and RS04 fixed head disks; and TEl6, Tu45,
and TU77 magnetic tape drives) connected to the same type of
controller. Interrupt dispatching for such devices is more difficult
than for standard interrupt devices because associated with one set of
interrupt vectors are multiple drivers. To dispatch interrupts,
therefore, a routine in the Executive must intervene. Figure 1-4
shows an example of common interrupt dispatching.

Lo B~} DB
Driver
- | . -
A | Common DS
Interrupt Dri
Dispatch river
Routine
{SRHALT)
> - MM
Driver

RH70 Interrupt
Vectors
ZK-248-81

Figure 1-4 Interrupt Dispatching for Common Interrupt Devices

The vectors for such controllers point to a common interrupt
dispatching routine in the Executive module DVINT. This common
routine avoids having to duplicate code in drivers. This routine, in
essence acting like an RH70 controller driver or a sophisticated ICB,
determines which driver will receive control upon an interrupt.
Operating like the routine that handles interrupts for overlapped seek
devices, this routine determines the type of device that interrupted
and dispatches to the proper driver.

1-12

£
£

oy

RSX~-11M-PLUS I/O DRIVERS

1.4.6 Subcontroller Devices

Certain devices have 2-level controllers, such as magtapes, where a
TM03 connects to an RH70 MASSBUS controller and also connects to TEl6
magtape drives. 1In such an arrangement, the TM03 is a subcontroller,
or master unit, that controls slave units; a register in the master
unit reports the number of the slave unit that generates an interrupt.

A subcontroller is associated with a data structure called a
subcontroller request block (KRB1l) that serializes access to the
subcontroller. Therefore, a driver must request and receive access to
both the subcontroller and the controller for a unit before executing
any operations. The KRBl is a subset of the KRB and every unit on the
subcontroller points to the KRBl of the subcontroller to which it is
attached.

1.4.7 Full Duplex Input/Output

In certain circumstances it may be necessary for a driver to handle
more than one I/0 request on a unit at the same time. Typically a
driver processes only one I/0 packet per unit at any one time. In
normal operation the driver calls the Executive routine $GTPKT to get
an 1/0 packet to process. When $GTPKT returns an I/0 packet, it marks
the device busy and does not allow additional I/O until the first I/0
activity completes. Therefore, only one I/0 process can be in
progress at the same time on a device. Full duplex operation allows
more than one I/0 process to be in progress on a device at the same
time.

To allow full duplex operation, the SGTPKT routine has a special entry
point called S$GSPKT. A driver calling SGSPKT specifies an acceptance
routine, to which $GSPKT returns control when an eligible packet is
found. The acceptance routine determines whether to accept or reject
the packet., The criteria that the acceptance routine applies could be
that a write request is accepted if a write has just completed or that
a read request is accepted if a read has Jjust completed. If the
routine rejects the packet, it indicates so to $GSPKT, which continues
to search for another packet. If the acceptance routine accepts the
packet, S$GSPKT dequeues the packet and passes it to the driver but
does not modify U.BUF and U.CNT in the unit control block (UCB) nor
does it mark the device Dbusy. As a result, during full duplex
operation the device appears idle even while it is processing an 1I/0
request.

To complete an I/0 request under full duplex operation, the driver
calls the SIOFIN routine rather than the $IOALT or $IODON routine.
SIOFIN does final processing without making the device look idle, "as
SIOALT and S$SIODON attempt to do. 1In full duplex operation, a unit
will always appear idle to the system and the driver acceptance
routine will determine whether the device can handle an I/0 request.

A driver handling full duplex operations requires augmented data base
structures. The conventional data base structures are defined for
only one I/0 request in progress per unit. Because the driver has to
keep more information concerning a unit that allows two I/0 requests
in progress, you may have to alter the UCB and other data base
structures to provide additional offsets. The DIGITAL-supplied full
duplex terminal driver not only uses a 1lengthened UCB and a
nonstandard SCB, but also connects to a dynamically allocated UCB
extension when the device is configured on-line.

A driver that handles full duplex operations provides a specific

example of software that handles concurrent I/0 for individual units.
Some devices, such as the DIGITAL-supplied LPA1l1-K

1-13

RSX-11M-PLUS I/0 DRIVERS

microprocessor-based 1laboratory subsystem, can handle a number of
simultaneously active I/0 requests. The software to handle such
concurrent I/0 may require augmented driver data base structures so
that the context of each I/0 process remains distinct and
controllable. The driver for the LPAll-K relies on an extended user
control block (UCB) to preserve the context of a maximum of eight
simultaneously active I/0 processes. User-written software for such a
device must properly synchronize fork processing to prevent
substituting the I/0 context of one process for that of another.
Moreover, the $GSPKT routine also might be used as described above to
make a unit appear idle when it is busy.

1.4.8 Buffered Input and Output

Typically, data for input and output requests are transferred directly
to and from task memory. To allow the successful transfer of data,

the task cannot be checkpointed until the transfer is complete. For
most high-speed devices, the transfer occurs quickly enough so that a
task does not occupy memory for too 1long a time. For slow-speed

devices, however, some mechanism must be available tu avoid binding
memory to a task for too long a time while the task is performing I/0.

Using the routines $TSTBF, S$INIBF, and $QUEBF in the Executive module
IOSUB, a driver can execute an I/0 request for a slow-speed device and
allow the task to be checkpointed while the request 1is 1in progress.
To perform the 1I/0 request, the driver buffers the data in memory
allocated to the driver while the task is checkpointed and the I/0
request is in progress.

To test whether a task is in a proper state to initiate I/0 buffering,
the driver calls the $TSTBF routine and passes it the address of the
I/0 packet. By extracting the address of the task control block (TCB)
from the I/0 packet, $TSTBF can examine various task attributes. For
example, if the task is checkpointable, buffered I/0 can be performed.
$TSTBF returns to the driver and indicates whether buffered I/0 can be
performed.

If buffered I/0 can be performed, the driver performs two operations.
First, it establishes the buffering conditions. For an output
request, it copies the task buffers to dynamically allocated pool
space. For an 1input request, it allocates sufficient pool space to
receive the incoming data. Second, the driver calls the S$SINIBF
routine to initiate the I/0 buffering. $INIBF decrements the task I/0
count, increments the task's buffered I/0 count in T.TIO, and releases
the task for checkpointing and shuffling. If the task is currently
blocked, the task state is transformed into a “"stopfor" state until
the task is unblocked, buffered I/0 completes, or both. Checkpointing
the task is subject to the normal requirements of an active or
"stopfor® state as described in the RSX-11M/M-PLUS Executive Reference
Manual.

After the driver transfers the data, it calls the S$QUEBF routine to
queue the buffered 1I/0 for completion. SQUEBF sets up a kernel
asynchronous system trap (AST) for the buffered I/0 request and |if
necessary, unstops the task. When the task is active again, a routine
in the Executive module SYSXT notices the outstanding AST and
processes 1it. ({If the request is for input, the routine copies the
buffered data to task memory.) This mechanism occurs transparently to
the task, thus the name kernel AST. The routine then calls the driver
to deallocate the buffer from pool. $IOFIN completes the processing.

LY
§
i

RSX-11M-PLUS I/O DRIVERS

1.4.9 I/0 Queue Optimization

Without I/0 queue optimization, the operating system groups input and
output requests in the queue by highest priority on a first-in,
first-out basis. The first requa2st at the highest priority appears
first in the queue and is processed first. Other requests within that
priority are then processed sequentially until the 1last request at
that priority is serviced.

With I/0 queue optimization, however, the next I/0 request at the
highest priority is not necessarily the next sequential regquest to be
processed. I/0 queue optimization allows the queue to be scanned, and
each request to be examined. The I/0O request, according to the method
of optimization then in effect, is the next one dequeued and passed to
the I/0 driver for ©processing. The highest priority requests are
still serviced first; however, throughpu:t is improved by the
reordering of requests within a priority.

There are three methods of I/0 queue optimization available:
e Nearest Cylinder
e Elevator

e Cylinder Scan

The Nearest Cylinder method processes the I/0 request that is closest
to the one at which the disk head is currently positioned. The
Elevator method processes requests as the disk head moves from the
perimeter to the innermost track of the disk. Once the disk head
reaches the innermost track, the direction is reversed and requests
are processed along the disk as the head moves back to the perimeter.
The Cylinder Scan method operates similar to the Elevator method,
except requests are only processed as the disk head moves from the
perimeter to the innermost track. Once at the innermost track, the
disk head returns to the perimeter and begins processing new requests,

The method you choose for vyour system 1is dependent upon the I/0
processing requirement of your application, the frequency with which
tasks access certain data areas on the disk, and the physical location
of data on the disk. Refer to the RSX-11M/M-PLUS System Management
Guide for information on selecting I/0 queue optimization methods.

Before an I/0 request can be gqueued to the driver, all three dqueue
optimization methods require the starting cylinder number of the I1/0
request. To find the cylinder number, the logical block number (LBN)
of each 1/0 request is converted to cylinder, track, and sector form.
The routine $DRQRQ in the Executive module DRSUB begins this
conversion. Because the cylinder, track, and sector form is specific
to the device geometry, this conversion must be completed by a
separate routine in the driver. The routine $DRQRQ locates the
conversion routine in the driver through offset D.VCHK in the driver
dispatch table.

The routine $DRQRQ calls the conversion routine for all I/0 requests.
However, 1if the functions are not logical transfer functions, such as
ACP functions or Attach and Detach operations, the conversion routine
does not complete the conversion, but rather returns to $DRQRQ.

Drivers without queue optimization call the routine $BLKCK in the
Executive module MDSUB to check the limits of the I/0 request. If
$SBLKCK locates an error, the routine $IOALT in the Executive module
IOSUB is called for the I/0 reque:t and the driver is returned to the
initiation entry point. If you chose queue optimization, a return to
the initiation entry point 1is not desirable because the necessary
functions of $DRQRQ will not be completed. Therefore, your completion

1-15

RSX-11M-PLUS I/O DRIVERS

routine must c¢all the routine $BLKC2 in the Executive module MDSUB
instead of SBLKCK to ensure the correct return to $SDRQRQ if an error
is detected.

The routine S$GTPKT in the Executive module IOSUB performs the actual
optimization. The driver «calls the Executive routine S$GTPKT for an
I1/0 request to process. SGTPKT scans the queue of 1I/0 packets to
select those of the highest priority. The routine then chooses the
correct packet within that priority based on the optimization method
currently in effect, dequeues that packet, and returns control to the
driver to process that I/0 request,

1.5 DISTRIBUTED I/0

On a multiprocessor system, a task may issue an I/0 redquest to any
device on any processor. The Executive must be responsible for
distributing the I/0 request to the correct processor. To ascertain
to which processor a device is attached and to have the driver execute
on the correct processor, the Executive must perform some
processor-specific functions. The following sections introduce the
data structure and the processing routines used by the Executive for
processor-specific functions.

1.5.1 UNIBUS Run Mask

To help describe devices attached to a processor, the software relies
on a concept called UNIBUS run. A UNIBUS run consists of a group of
distinct devices, all of which are electrically connected to the same
UNIBUS and are not separated by any bus reconfiquration devices. Each
UNIBUS run is attached to the same processor at the same time because
of the way the devices are physically attached to the UNIBUS.
{Devices attached to a MASSBUS o¢f a processor are also on the
processor's UNIBUS run.) The UNIBUS run, then, is the smallest
fragment of a particular UNIBUS capable of being switched (or not
switched) between processors.

Essential to understanding UNIBUS runs is the concept of a switched
bus., A switched bus is a portion of a UNIBUS that can be physically
connected to one of multiple UNIBUSes. A device on the UNIBUS, called
the DT07 UNIBUS switch, controls the connection and allows a switched
bus to be connected to any one of a maximum of four UNIBUSes. Any
UNIBUS device or devices except a processor or ancther bus switch may
be connected to a switched bus. Moreover, because of the electrical
delay associated with the bus switch, some high-speed devices (such as
the DMC-11) cannot be on a switched bus.

In a multiprocessor system, the DT07 allows the switched bus to be
physically switched from the UNIBUS of one processor to the UNIBUS of
another processor. When the switch is connected to a particular
processor's UNIBUS, all peripherals on the switched bus operate as if
they were permanently connected to that UNIBUS. By means of
reconfiguration software, a switched bus can be disconnected from one
UNIBUS and be available for connection to another processor's UNIBUS.
Because a user task can direct an I/0 request to any device on the
system, the Executive must be able to perform the operation on the
specific processor to which the device is connected.

A UNIBUS run is represented in a cell called a UNIBUS run mask (or
URM} . The URM 1is a 16-bit word containing a bit for every possible
UNIBUS run. UNIBUS runs are numbered from 0 to 15, and the system is
restricted to a maximum of 16 UNIBUS runs. There are four UNIBUS runs
reserved for the maximum of four processors. The numbering allows a

1-16

RSX-~11M-PLUS I/0 DRIVERS

maximum of 12 switched buses. However, a switched UNIBUS cannot be
connected to another switched UNIBUS. A primary UNIBUS run would
contain a processor, its UNIBUS, and the peripherals directly attached
to its UNIBUS; and a secondary run would consist of a switched bus
and the devices attached to it.

In the I/0 data structures for each controller in the multiprocessor
system 1is an associated UNIBUS run mask. The bit set in the URM
defines the UNIBUS run to which the controller is attached. In the
Executive, there is a table of connectivity masks, one UNIBUS run mask
for each processor in the system. The table represents the UNIBUS
runs to which each processor is attached. A bit set in the table mask
word for a processor indicates that the UNIBUS run 1is currently
associated with that processor.

To ascertain whether a <controller is attached to the current
processor, the Executive compares the controller URM with the mask for
the processor in the connectivity table. If the same bit is set in
both words, the controller is attached to the current processor. If a
bus is switched from one processor to another, the system need alter
only the connectivity masks of the processors affected.

1.5.2 Conditional Fork

The conditional fork routine (SCFORK) is the method by which the
Executive distributes 1I/0 requests to devices connected to another
processor. In a multiprocessor system, peripheral devices are
generally accessible to only one UNIBUS run. Devices that do have
dual-access capability are not necessarily accessible from every
UNIBUS. The Executive ensures that, when a driver accesses a
controller, the driver process executes under control of the processor
in whose I/0 space the controller registers reside. An exception is
the Executive passing control to a driver for special processing of an
I/0 packet. In this case, the driver is responsible for ensuring that
the process executes on the correct CPU. See the discussion of the
UC.QUE bit in Section 4.4.4.

The conditional fork routine is necessary because the system allows
processors to remain anonymous as far as task execution is concerned.
The system does not restrict execution of a user task to the processor
associated with a device to which the task directs I/0. Basically it
is the driver processes that need to execute on specific processors.

1.5.3 Processor-Specific Functions

When the Executive calls a driver to initiate I/0, the driver may not
be executing on the processor associated with the device unit to which
I/0 is directed. When the driver requests an I/0 packet to process,
the Executive must ensure that the driver executes on the correct
processor because the driver may access the I/0 page. Therefore, the
Executive routine (SGTPKT) that dequeues an 1/0 packet for the driver
performs a conditional fork. A cell in the fork block for the device
unit contains a UNIBUS run mask that defines the processor to which
the unit's controller 1is attached. The conditional fork routine
accesses this cell to ascertain what action to take.

The URM of the device to which the I/0 request is directed therefore
determines whether the driver may execute on the current processor.
If the URM of the device intersects the current- processor URM, the
conditional fork routine returns and the I/0 packet is immediately
passed to the driver. The driver then normally proceeds to start the
proper I/0 function. If execution must be continued on another

1-17

RSX-11M-PLUS I/0 DRIVERS

processor, the conditional fork routine performs a fork (that |is,
calls the S$FORK routine). The driver has no indication that it has
become a fork process (that is, the action 1is transparent to the

driver).

To ensure that the driver executes on the correct processor, the fork
routine does two operations. First, it creates and queues a fork
block for the processor on which the driver must execute. Second, it
returns to the driver in such a manner as to force the driver to
dismiss itself. As soon as possible, the fork processor restarts the
driver process executing on the appropriate processor.

For devices that do not have an assigned controller, the system may
defer determining whether the driver executes on the current
processor. Therefore, for overlapped seek and dual-access devices,
the conditional fork routine is entered after the Executive routine
that assigns the controller.

1.6 OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO RSX-11M-PLUS

How you incorporate a user-written driver into the system depends
mainly on whether you make your driver loadable or resident. If your
driver is loadable, its data base can be either loadable or resident.
If your driver 1is resident, both 1its data base and its code are
resident. Thus, because you build the Executive image during system
generation, you can include any resident driver elements in the
Executive image only during system generation. If your driver 1is
loadable and has a loadable data base, you can incorporate it at any
time after you build the Executive under which the driver will run.

During system generation, you answer questions concerning the types
and quantity of peripheral devices on your system. Based on your
answers, the system generation software creates the device data base
source files. The file SYSTB.MAC contains the data base definitions
for all the DIGITAL-supplied devices that were generated with resident
data Dbases. The files xxTAB.MAC, where xx is the device mnemonic,
contain the data base definitions for each of the DIGITAL-supplied
devices that were generated with 1loadable data bases. The files
XxDRV.MAC, where xx is the device mnemonic, contain the driver code to
support the devices. The system generation software assembles and
task builds these modules. The resident driver and data base modules
are 1linked 1into and become a permanent part of the Executive. The
loadable driver and data base modules are task built separately for
loading into memory after the Executive has been built.

A privileged system task called LOAD is responsible for loading into
memory a driver that is not resident. LOAD creates the necessary
interrupt control blocks (ICBs) for accessing a driver and establishes
the 1linkage between the data base structures in the system device
tables and the driver code being loaded. Another system task called
CON initializes the interrupt vectors to point to the ICBs and
actually places the devices on-line. CON can also change the vector
and CSR address assignments in a device's data base. Another
privileged system task called UNLOAD can remove a loadable driver from
memory. (Although UNLOAD removes a loadable driver, it does not
remove a loadable data base.)

To incorporate a user-written driver into RSX-11M-PLUS, vyou first
create two modules, one in which you define the data base and the
other in which you include the driver code itself. You then must
integrate vyour driver data base and driver code modules into the
system device tables. If your data base 1is resident, the linkages
that your data base module must satisfy are: (1) the link of the
controller table (CTB) list; and (2) the link of the device control

i-18

.

gy,

e

%

RSX-~11M-PLUS I/0 DRIVERS

block (DCB) 1ist. The linkage for the driver code connects the DCB
for the device that your driver supports to the driver dispatch table
(DDT) . If your driver and data base are loadable, you must supply in
your code symbols and labels that LOAD needs. Your device interrupt
vectors are initialized and the devices are placed on-line by CON.

Because the data base for a loadable driver can be loadable, the LOAD
task alsc loads a data base. When you load a driver, LOAD checks to
see whether a data base is resident for the type of device whose
driver is being loaded. 1If a data base is not resident, LOAD reads
the driver symbol definition file to find the start and end of the
data base in the driver image. (Thus, if your driver data base is to
be loadable, you must have defined its start and end in the data base
source code.) Knowing the start and end, LOAD reads the data base from
the driver image. LOAD places the data base in the system pool so
that it resides in Executive address space, accordingly relocates
pointers and 1links within the data base to be wvalid Executive
addresses, and also connects the CTB and DCB(s) in the data base to
the system device tables. Moreover, so that the system device tables
are not corrupted by an incorrect data base, LOAD performs many
consistency and validity checks on the data base being loaded.

If your driver is loadable and has a loadable data base, you will
build (1} a loadable image containing the driver code module followed
by the driver data base module and (2) a symbol definition file on
which LOAD depends to find critical data base and driver locations.
You will link the driver image to the Executive under which the driver
will run. However, the driver image will be separate from the
Executive image. LOAD is responsible for 1locading both your driver
data base and driver code, for connecting the data base to the system
device tables, and for connecting your driver code to the data base.

If your driver is loadable but has a resident data base, you will have
to perform a system generation and build the Executive under which the
driver will run to link your driver data base module(s) into the
system device tables. This operation makes your driver data base
resident with the system device tables. You will also build (1) a
loadable image containing the driver code and (2) a symbol definition
file which LOAD will use to locate the driver dispatch table. LOAD is
responsible for 1loading vyour driver code and for connecting your
driver code to the data base that is resident with the system device
tables.

If your driver 1is resident, vyou will have to perform a system
generation and build the Executive to link the driver data base into
the system device tables and to include the driver «code 1in the
Executive image.

Whatever type your driver is, you will use the CON task to initialize
the device interrupt vectors and place the devices on-line.

Because LOAD provides consistency and validity checks on a data base
being loaded, DIGITAL recommends that you make your driver and its
data base loadable. (Additional rationale for making vyour driver
fully loadable is given in Section 1.7.) Furthermore, with a loadable
driver and loadable data base, you can more easily modify your driver
and its data base. You need not rebuild your Executive and privileged
tasks. To change the driver code, you need only build a new driver
image, unload the current version, and reload the new version. To
change the driver data base, you must build a new driver image (which
incorporates the modified data base module), rebootstrap your system,
and load the new driver which causes the modified data base to be
loaded. (You must bootstrap your systém to change the data base
because UNLOAD does not unlocad a data base, and because LOAD does not
load a data base for a driver if one is currently loaded for that
driver.)

RSX-11M-PLUS I/0O DRIVERS

Using a loadable driver with a loadable data base saves work in the
long term. During debugging, data base inconsistencies are likely to
be caught by LOAD. Thus, you prevent many such errors from later
creating system problems.

A resident driver or a loadable driver with a resident data base is
more difficult to debug and to modify. LOAD does not perform
consistency and validity checks on a resident data base,. Thus, a
valuable debugging aid is not available. Moreover, to modify such
drivers, you must rebuild the Executive, which generally implies
rebuilding the privileged tasks.

1.7 SPR SUPPORT

The capability to incorporate a user-written driver into vyour system
is a supported feature of RSX-11M-PLUS. Because a user-written driver
is considered a system modification, DIGITAL may not support the
system that results after you incorporate your driver. Being a part
of the Executive, your driver can subtly corrupt it. Therefore,
DIGITAL cannot guarantee support which entails debugging user-written

drivers.

Fixing a problem in a system is largely a matter of being able to
reproduce the problem reliably. If a problem on your. system can be
shown to have no relation to your driver and DIGITAL can reproduce the
problem, SPR support can be provided. A good reason for using a
loadable driver with a loadable data base is that you can more easily
attain an unmodified system by not loading your driver and its data
base. You can then reproduce a suspected problem in an unmodified
system and can submit an SPR that DIGITAL can answer. Therefore, your
attempting to recreate a suspected problem on your system without your
driver and its data base saves both you and DIGITAL time in answering

the SPR.

1-20

e
£ b

CHAPTER 2
DEVICE DRIVER I/0 STRUCTURES

This chapter deals mainly with structures at the block 1level, their
relationship to the hardware configuration and functionality
supported, and their relationships to each other. The precise
description of each structure is given in Chapter 4.

2.1 1I/0 STRUCTURES

The main elements in the driver I1I/0 environment essentially define the
logical and physical characteristics of the supported hardware and
establish the links and connections by which routines can access and
manipulate driver data. The following subsections describe the
control blocks that a driver data base module defines, and explain in
general terms the purposes for each block.

2.1.1 Controller Table (CTB)

A controller table defines a unique controller type on the system. A
CTB must exist for each physical controller type. All controller
tables are linked together, in a list, with the head of the 1list
$CTLST 1in the Executive common area. The list of the controller
tables is one of the threads through the system data base to provide
access to all device-related data. The link in the last CTB in the
list has a value of zero.

Associated with each CTB is a 2-character ASCII controller name which
must be unique throughout the system. This unique name allows the
Executive to find the correct CTB for the controller type. For
example, the RH11/70 controller has the name RH instead of DB, DS, DR,
or MM,

A CTB is a static structure created during system generation. Any
user-written driver data base, therefore, must have its own CTB. The
user-created controller table must also be linked into the system CTB
list.

A CTB has generic status information, links, and pointers to other
structures on the system. The table of KRB addresses in the CTB is
the means by which the Executive handles interrupts for the controller
type and dispatches to the correct driver routine.

2.1.2 Controller Request Block (KRB}

The controller request block is the means by which the Executive
maintains controller- or hardware-specific information and accesses

DEVICE DRIVER I/0 STRUCTURES

the correct information for a unit which its associated controller
owns. One KRB exists for each device controller in the configuration.
It stores such data as vector and CSR location, status, and UNIBUS run
mask.

In a configuration where a device has only one access path to a
controller and the controller allows only one operation at a time, the
KRB is combined with another structure called the status control block
{sCB) . (The SCB holds context for a unit while an operation is in
progress.) Because only one access path is possible in such a
configuration, wunit context is always associated with the same
controller. Moreover, because only one operation 1is possible at a
time, the same context storage area can be used for all units attached
to the controller. Thus, in a conventional driver operating
environment, the context storage is merely an extension of the
controller request block.

In a configuration where multiple operations in parallel on the same
controller are possible, the controller context is separate from each
independent unit context. Therefore, each unit capable of operating
independently on a controller has the context of the current 1/0
operation stored in an SCB separate from the controller KRB. In such
an operating environment, any unit can access the controller while
other operations are pending, but only one unit can have access at a
time. The KRB, then, indicates which unit owns the controller for the
current operation, and synchronizes access among driver processes on
the same controller.

Where multiple operations in parallel are allowed on a controller,
there must be some way to delay access to the controller when it is
busy. Therefore, in the KRB the Executive holds the head of a list of
access requests called the controller request gueue. The 1list
contains fork blocks for driver processes awaiting controller access.
The queue is the means by which the Executive serializes access to the
controller.

When a controller allows parallel operations, the software must have a
means of determining which of several units generated an interrupt.
The KRB, therefore, contains a table of addresses which associate the
controller with all the units connected to it. This table, indexed by
physical unit number, must appear if the <controller in question
supports overlapped seek operations. When a device has multiple-
access paths, the controller-specific information in the KRB is
separate from each independent unit context. 1In a situation where a
device accesses alternate controllers, a driver must request the
Executive to assign the wunit to a specific controller. The unit
assignment involves temporarily associating unit context with the KRB
of the specific controller. The SCB, then, holds information
connecting it to the KRB of the currently assigned controller.

The KRB also holds the configuration status of the controller. 1If the
KRB indicates that the controller is off-line, no activity can take
place on any unit connected to the controller.

2.1.3 Device Control Block (DCB)

The device control block describes the static characteristics of a
device type and of units associated with a certain device type. The
DCB is the means of access to the driver dispatch table and thus to
the driver. At least one DCB exists for each logical type of device
on a system. There may be more than one DCB for a device type. For
example, there are two device control blocks for the device TT: on a
system that supports terminals connected by both DL11 and DZll
interfaces.

DEVICE DRIVER I/0 STRUCTURES

A cell in each device control block forms a link in a forward-linked
list, with the head of the list starting in a cell ($DEVHD) in the
Executive common area. This list, as with the CTB 1list, is a main
thread through the system data structures to device-related data. The
link in the last DCB in the l1ist has a value of zero.

The static data in the DCB gives such information as the generic
device name, unit quantity and 1links to individual unit data, the
address of the driver dispatch table, and types of I/0 functions
supported by the driver. Typically, the Executive QIO directive
processing code and not the driver code accesses the DCB.

2.1.4 Unit Control Block (UCB)

The unit control block holds much of the static information about an
individual device wunit and contains a few dynamic parameters,
Although unit control blocks need not be any prescribed length for
different devices, all unit control blocks for the same device type
must be of equal length. (The UCB length is stored in the device
control Dblock.) This condition allows the UCB to contain varying
amounts of unit- and device-independent data for different types of
devices.

A UCB, one of which exists for each device unit, enables a driver to
access most of the other structures in the I/0 environment. A UCB
provides access to most of the dynamic data associated with 1I/0
operations. Given the address of a UCB, a driver may readily find
most of the other data structures in which it is interested because
the proper 1links exist. Because of this access information, the UCB
is a key control block in the driver I/0 structure.

The static data in the UCB includes pointers to other I/0 structures,
definitions of unit control bits which requlate directive processing,
definitions of unit status bits which describe operational conditions,
and definitions of unit- and device-dependent characteristics and
storage cells.

Data in the UCB is accessed and modified by both the Executive and the
driver.

2.1.5 Status Control Block {SCB)

The status control block holds driver context for operations on a
device unit. In the SCB are stored such data as the pointer to the
head of the queue of input/output requests; the 1link to the fork
blocks queued for the unit; the fork process context; timeout, unit
status, and error logging information; and the address £for the
controller request block (XRB) representing the device controller (if
the device has a controller}.

The Executive accesses the SCB to set up an I/0 regquest, to store
context while a request 1is 1in ©progress, and to post results and
status. When the driver accesses the SCB, it 1is usually for read

access only.

The number of status control blocks depends on the processing support
in the Executive. If the controller itself cannot handle parallel
operations, only one SCB is needed for each controller. In such a
case, a controller can have only one unit’ processing a command at one
time, and there is no need to store context for more than one unit at

DEVICE DRIVER 1/0 STRUCTURES

a time. There is also no need for a physically separate controller
request block (KRB) to separate generic data from unit context.
Therefore, the driver data base contains the required KRB cells in the
status control block.

If the controller allows parallel operations and the Executive
supports this feature, there must be one SCB to store context for each
unit capable of operating independently on the controller. In such a
configuration, a cell in each SCB points to the KRB of the controller

to which the units are connected.

2.2 DRIVER DISPATCH TABLE (DDT)
The driver dispatch tablel contains the entry points to and the
interrupt entry addresses for the driver. An entry point is the
location at which the Executive calls the driver to perform a specific
function. An interrupt entry address is a location to which the
central processor or the Executive transfers control within the driver
for servicing hardware interrupts. The pointer to the interrupt entry
address resides either in an interrupt control block if the driver is
loadable or in the device interrupt vector in the system common area
of the Executive if the driver is resident.
Every driver has four conventional entry points as follows:

¢ I/0 initiation

e cancel I/0

e device timeout

e device powerfail

Two more entry points are added for controller and unit on-line and
off-line status changes:

e KRB status change
e UCB status change

For many devices, these status change entry points are merely a return
to the Executive calling routine.

There are two additional entry points that have been added for advance
driver features:

® Deallocate buffers and next command (FDX TTDRV)

® Address checking and conversion (queue optimization disk
drivers)

1. The DDT is not a structure in the strict sense of the word because
it is defined in the instruction part of the driver code. However,
because it contains addresses for dispatching code, it is included in
the data structure description.

)

DEVICE DRIVER I/0 STRUCTURES

2.2.1 I/0 Initiation

The Executive transfers control to this entry point to inform the
driver that work for it is waiting to be done. To make work for the
driver, the Executive performs predriver-initiation processing.
(Predriver initiation is described in Chapter 3). If, at the end of
predriver processing, the Executive has I/0 packets gqueued for the
driver, it calls the driver at this entry point.

When the driver gets control at its I/O initiation entry point, RS
contains the address of the UCB for the unit on which the request is
to be processed. To establish access to the 1/0 packet, the driver
calls an Executive routine that either returns information in
registers concerning both the packet to be processed and the
associated data in order to gain access to the data structuresl or
causes the driver to dismiss itself. (There may be no packet to
process or the driver may already be busy.)}

Once control is returned to a driver and there is a reguest to
process, the driver must extract the information from the registers,
establish data within the control blocks, and process the request.
This means that the driver proceeds with an I/0 request until it sets
the GO bit on the device, which physically initiates the 1I/0
operation.

Typically a driver is called at this entry point when there is a
packet in the 1I/0 queue. However, a driver can be called before a
packet is placed in the I/0 queue. Refer to the description of the
U.CTL control flag UC.QUE in Section 4.4.4 for information on queueing
an I/0 packet to the driver.

2.2.2 Cancel 1/0

To terminate an in-progress I1/0 operation, the system flushes the I/0
queue and calls the driver at this entry. There are many situations
in which a task must terminate I/0O. When such a termination Dbecomes
necessary, a task issues an Executive request and the Executive relays
the request to the driver by calling it at this entry point.

The driver is responsible for checking that the I/0 operation
in-progress was issued from the task that is forcing the termination,
and for completing or terminating the operation before returning to
the caller.

Typically, a driver is called at this entry point only when an 1I/0
operation is in progress. A driver can be called even if the unit
specified is not busy. Refer to the description of the U.CTL control
flag UC.KIL in Section 4.4.4 for information on unconditional
cancelling of I/0.

2.2.3 Device Timeout

When a driver initiates ap I/O0 operation, it can establish a timeout
count. If the operation fails to complete within the specified
interval, the Executive notes the lapse and calls the driver at this

1. The $GTPKT routine, which gets a packet for the driver to process,
is described in Chapter 7.

DEVICE DRIVER I/0 STRUCTURES

entry point. Using this facility, a driver can wait for an interrupt
but need not hang up if the interrupt never occurs. Thus, no driver
should ever stall on a request because a hardware failure prevented an
expected interrupt from happening.

2.2.4 Device Power Failure

The Executive calls the power failure entry point when power is
restored after a failure any time the controller is busy (that is,
when I/0 is in progress), Typically, a driver responds to a power
failure in the same manner it responds to a timeocut. 1In such cases,
the power failure entry point may simply be a return to the caller
because recovery will occur by means of the timeout entry point. The
driver is called for both controller and unit power failure unless the
driver is associated with a common interrupt controller. For common
interrupt controllers, the driver is called at this entry point only
for unit power failure and is called at a special entry defined in the
common interrupt table for controller power failure.

A driver can be called when power is restored regardless of the
existence of an outstanding I/0 operation. Refer to the description
of the U.CTL control flag UC.PWF in Section 4.4.4 for information on
unconditional call on power failure.

2.2.5 Controller and Unit Status Change

Two entry points are required for configuration status changes of the
controller and units. The Executive enters one entry point to put the
controller on-line and take it off-line. The other entry point,
called once for each unit whose status changes, is for putting units
on-line and taking them off-line. The driver must show successful
completion of the on-line or off-line request or the Executive will
not effect the status change. The driver has 60 seconds to perform
whatever synchronization it requires before returning to the
Executive, In most cases, however, the driver will return
immediately.

2.2.6 Device Interrupt Addresses

Control passes to an interrupt address when a device, previously
initiated by the driver, completes an I/0 operation and causes an
interrupt in the central processor. A device may have associated with
it more than one interrupt entry. For example, a Ffull duplex device
such as a terminal will have two interrupt addresses. The interrupt
entry differs from an entry point in that the connections between the
device and the driver is more direct--the Executive is not involved.

The interrupt addresses are arranged in a block in the DDT. The
arrangement is general enough to support multicontroller drivers such
as the terminal driver. The block defines the address or addresses to
include in the vector for the driver. There is no restriction on the
number of vectors each controller has, and the number of vectors is
implied by the number of addresses in the interrupt address block.

2.3 TYPICAL CONTROL RELATIONSHIPS

This section presents different arrangements of the control structures
that are found in RSX-11M-PLUS. The section concentrates on the

2-6

o

i R,‘}

DEVICE DRIVER I/0 STRUCTURES

relationships among device control, unit control, status control, and
controller request blocks and controller tables based on hardware and
functions supported. Descriptions of the detailed contents of the
structures is 1left to Chapter 4, where the coding requirements are
presented. Some of the arrangements are not conventional but are
shown to convey the flexibility you can find in a system. Section 2.4
shows how such arrangements fit 1into the overall system I/0 data
structure.

The arrangements described in this section illustrate the strategy in
offering a flexible I/0 data structure. There need be only one
controller table for each controller type. Multiple-device control
blocks for a single device type reflect the capability toc handle
varying characteristics. The existence of one or more status control
blocks depends on the degree of parallelism possible: one SCB for
each controller servicing several units (no parallelism); or one for
each device unit combination on the same controller {unit operation in
parallel) .

The I/0 data structure reflects the hardware configuration that the
data structures describe. The flexibility in the data structure
arrangements provide flexibility in configuring I/0 devices. The
information density in the structures themselves reduces the coding
requirements for the associated drivers.

2.3.1 Multiple Units per Controller, Serial Unit Operation

A typical arrangement of structures for a user-written driver is shown
in Figure 2-1. The arrangement could represent an RKO5J controller
with two RK05 drives attached. A single controller table (CTB)
defines the existence of the controller type on the system. One
device control block (DCB) establishes the characteristics for the
type of device running on the controller.

The status control block (SCB) and controller request block (KRB) are
contiguous in this arrangement because the software does not allow
another I/0 operation to begin while the controller 1is busy. A
separate unit control block (UCB) describes each unit attached to the
controller. The UCBs are associated with the SCB, which contains the
context of the operation currently in progress.

'2.3.2 sSingle Controller, Serial Operation

Another typical conventional arrangement of structures for a
user-written driver is shown in Figure 2-2, which could represent two
LPl)l controllers, one with an LP04 and the other with an LPO05
attached. It represents the simplest case of driver processing.
Figure 2-2 shows what is required for a controller that allows only a
single I/0 operation for each controller. A single controller table
defines the existence of the <controller type on the system. One
device control block establishes the characteristics for the type of
device running on the controller.

The status control and controller request blocks are contiguous in
this arrangement because, while the controller is busy, another I/0
operation cannot begin. Only one SCB is necessary to store the
context of the wunit operation. The UCB peints to the SCB, which in
turn points to the KRB of the unit's controller. Because the system
must handle interrupts from multiple controllers, the contrcller table
points to the KRB of each controller present.

DEVICE DRIVER I/0 STRUCTURES

DCB CTB
List List

DCB CTB

KRB

uce SCB

uce

ZK-248-81

Figure 2-1 Multiple Units per Controller, Serial Unit Operation

2.3.3 Parallel Unit Operation

Some devices, such as the RK06, allow multiple units to have seek
operations in progress at the same time. In particular, the RKO06
allows such operations to overlap a data operation. Figure 2-3 shows
the arrangement needed in the software structures to support parallel
operations on one controller.

Two additional structural changes are required from the serial
operation arrangement. First, because more than one unit may have an
operation pending at the same time, a structure is needed to store
unit context. Therefore, for each unit (and each unit control block)
there is a separate status control block. Second, because interrupts
can come from more than one unit, some way must exist to access the
proper unit., As a result, the controller request block contains a
table of wunit control block addresses that allows the driver to find
the structures for the unit generating an interrupt.

DEVICE DRIVER I/0O STRUCTURES

DCB CcTB
iaanEE e e
List List
DCB CTB
KRB ‘
= ucB SCB »
s od S T——
ucs | |
KRB
SCB

ZK-260-81

Figure 2-2 Single Controller, Serial Operation

. focut
DCB CTB
UCB sSCB
I - KRB
ucse SCB
. o UCB
Table

ZK-251-81

Figure 2-3 Parallel Unit Operation (Overlapped Seek)

2.3.4 Multiple-Access (Dual-Access) Operation

Some devices, such as the RK06, have a dual port option that provides
multiple-access paths to units. On the RK06, dual ports on the unit
enable a single unit to be electronically switched between two
controllers. Figure 2-4 shows the several changes in the structures
needed to support dual-access operations.

2-9

DEVICE DRIVER I/0 STRUCTURES

Common
Interrupt
Tabie
bt
-~ s
DCB
Current cre
KRB e
Pointer
SCB
UCB PortA e
© KRB o
Table Port B S KRB
- Current
UCH UucsB
KRB

- Pointer Table
KRB Port A KRB

Table Port B -
UCB
Table

7175781

Figure 2-4 Dual-Access Operation

Separate status control blocks are needed for each wunit because, |if
one controller is currently busy, the alternate controller can be idle
and allow the operation to proceed. The difference in the dual-access
structure 1is that the SCB no longer points to the same controller
request block all the time as in the overlapped seek arrangement. The
Executive can change the SCB pointer to a KRB to reflect the
capability to electronically switch a unit between two controllers.

To enable the software to differentiate which controllers may access a
unit, the SCB has a table of KRB addresses. For dual-access disks,
the table contains two entries: the addresses of the contrsller
request blocks for each controller Dbetween which the unit can be
switched.

2.4 OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

This section presents an overview of the relationships among the
user-written driver data structures previously introduced in this
chapter and the Executive I/0 structures and DIGITAL-supplied driver
structures. The goal of the section is to convey the general manner
in which user-written structures and code 1ink intoe the system I/0
scheme and to describe generally the use to which the system puts the
structures. The specific wuser-written structures are simplified
somewhat so that the emphasis is placed on the linkages with other
parts of the system rather than on the details of user-written
structural relationships.

DEVICE DRIVER I/0 STRUCTURES

This section should be used with Section 2.3 to understand the general
structural concepts. For example, Section 2.3 describes various
arrangements of unit control, status control, and controller request
blocks based on hardware functions the software structures support.
This section treats such arrangements as an engineering black box that
is oriented in the general I/0 environment. Thus, in the generalized
I/0 data structure depicted in this section, the pointers in the KRB
table of the SCB are not shown and the table is simply marked KRB
Table.

Figure 2-5, which provides the basis for the presentation of the 1/0
data structure, shows the individual elements and the important link
fields within them. The numbers in the figure <correspond to the
numbers in the lead paragraphs of the text to simplify the discussion
and to guide you through the data structures.

1. The location represented by the Executive symbol $DEVHD is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional 1list of all device control
blocks in the system. The first word in each DCB is a link
to the next DCB.

The list of device control blocks is one of the two threads
through the system data tables for device-related
information. For example, the list is the means by which
executive routines scan the data structures to determine what
devices are on the system and what is the status of units.
User-written device «control blocks must be linked into the
list of system defined DCBs.

2. Every loadable driver is associated with a partition control
block (PCB). The PCB defines the characteristics of the
memory area into which the driver is loaded. The Executive
and tasks such as LOA and UNL reference the data in the PCB.
A driver is not concerned with the PCB.

3. If a task is attached to a unit, the UCB has a pointer to the
task control block {(TCB) of that task.

4. The task header is an independent entity in the I/0 data
structure and the driver never accesses it. A copy of the
task header is taken from the task partition and stored 1in
the Executive dynamic storage region whenever the task is
actually in memory. This copy is then used by the Executive.

A logical unit table (LUT) entry in the task header has two
items of interest: a pointer to an associated unit control
block and, if a file is being accessed, a pointer to a window
block. The Executive accesses the logical unit table of a
task during a QIO request and indexes the table by the
logical unit number specified in the QIO request,

5. A device control block has a pointer to the wunit control
block of the first related unit. Because the length of a UCB
is stored in the DCB and all UCBs are allocated in a
continuous area, access to all the UCBs related to that DCB
is possible. This arrangement allows software to access all
related unit information for a device type.

A DCB also has a pointer to the start of the driver dispatch
table. This pointer allows the Executive to call the driver
at its entry points to process an I/O-related or a
reconfiguration request.

DEVICE DRIVER I/O0 STRUCTURES

P9 ST HZ

$82In30n135 ejed 0/I 831sodwo) g-z 8inbrg

Juswsbuedse ajqy
‘ajdwexa jeodAl

ss0d AJana Moys 10U $sop)
e Ajuo smoys wesbep sy |

(MSVL)
84 | (5) 310N
{INNTOA) (9SV 1)
am
- ~— B - -4 i~
M -y 378v.L 80N 378vL BY AHINT 107 BIAYIH
USVL @
805
gy | | 100183404 dov
INNTOA 40 801
Q3LNNCW @
83A
NEVal
{X30N1) e 378vL 89N 4 89N owﬁuwwm<
804 =
378v1 guy = - @
| By -
o~ .lrL 808 ° 8on 44
SRR S Sh—— | == ! | a0
133084 - AHMH4$ @ 3718vavot
ori @
usLINg L L
rt-—-—=—=--==--%-
3n3No o/
! $L3INOVd O/1 @ !
I |
810 | I 900 804
810 | |
TR oy I e i
Y | @ @
157108 @ h arAaas
3]
1dnuiatug
uowILoY Laa
@ 801
991 1514 a 1xat petreee T
oL S 3000 ¥3IAIHO o g YOL03A 301A3Q

2-12

DEVICE DRIVER I/O STRUCTURES

Each unit contrel block -contains a pointer back to its
related DCB. This backpointer allows the Executive interrupt
dispatch code to enter the proper driver (through the pointer
to the driver dispatch table).

Associated with each UCB is a status control block. The SCB
is shared by all units for a device type that does not
require units to operate in parallel, When units can operate
in parallel, each UCB has its own associated SCB.

As part of processing a QIO directive (queued I/0 request),
the Executive builds a structure called an I/0 packet.
Storage for packets is in the system dynamic storage region
(the pool). The Executive connects the packets by a pointer
in each packet to form a singly-linked list called the 1I/0
queue. The Executive maintains two pointers in the SCB to
the list of packets. The first pointer is to the start of
the 1list and the second pointer is to the last packet in the
list.

The driver should not access the 1list of I/0 packets
directly. When the Executive transfers control to the driver
to initiate processing of an I/0 request, the driver
immediately calls an Executive service routine to get a
packet to process. The routine passes, to the driver, data
sufficient to process the request (for example, the address
of the packet). Thus, the Executive, and not the driver,
removes a packet from the queue of packets. However, in
performing the I/0 request, the driver c¢an access certain
fields in the packet to be processed because a pointer to the
currently active I/0 packet is kept in the SCB.1

The Executive determines the ordering of packets in the
gqueue., Typically, higher-priority requests are placed at the
head of the queue.

At least one status control block (SCB) exists for each
controller. Where a controlier and software support
operations in parallel on multiple units, one SCB exists for
each unit capable of operating independently. A pointer in
the SCB connects to the controller request block (KRB) of the
controller to which the related unit 1is connected. 1If
multiple-access paths between a unit and controller are
possible, the KRB pointer is dynamic. The KRB to which the
SCB points at one instant therefore, is considered to be the
currently assigned KRB. To reflect the existence of
alternate controllers, a table of pointers to all the
possible KRBs 1is contained in the SCB, separate from the
pointer to the currently assigned KRB.

The fork block in the SCB contains some of the driver process
context. The driver executes an Executive routine so that
processing will occur at fork level. To preserve processing
status, the routine stores some context in the fork block.
When the driver eventually runs again, the fork processor
recovers the proper context from the fork block.

Normally, the driver does not directly manipulate the I/0 queue.
An exception is when a driver needs to examine an I/0 packet before it
is queued or instead of having it queued. This exception involves a

bit in a control byte of the unit control block. For more

information on queuing of I/0 packets to the driver, refer to the
description of the UC.QUE bit in Section 4.4.4.

2-13

10.

11.

12,

DEVICE DRIVER I/0 STRUCTURES

On multiprocessor systems, the fork block contains an extra
cell to define the processor on which the driver must execute
the I/0 request. The Executive routine that preserves
context in the fork block ensures that certain driver code is
processed on a particular processor.

The fork blocks for pending driver processes are connected in
a singly-linked 1list, the head of which is in a location
(SFRKHD) in the Executive region. Generally, the fork
processing routines 1link a fork block in FIFO order. At
location $FRKHD+2 the executive maintains a pointer to the
last fork block in the list,

Associated with each open file on a mounted volume is a file
control block (FCB). The file system alone uses the FCB to

control access to the file.

For each open file on a mounted volume, a window block exists
for each task that has the file open to hold pointers to
areas on the volume on which the file resides. The function
of the window block is to speed up the process of retrieving
data items from the file. (The associated ACP need not be
called to convert a virtual block number in a file to a
logical block number on the device.) The driver 1is not
concerned with the window block.

The driver dispatch table (DDT) is part of the driver code
and, through the vector and the interrupt control block, is
the means by which the device interrupts are passed to the
driver.

The controller request blocks (KRB) are linked into the I/0
data structure through the pointers in the controller table
(CTB). The table of KRB address in the CTB is static.

The KRB table allows the Executive access to the structures
for a controller when it initiates an interrupt. To report
the termination of a data transfer command, a controller
initiates an interrupt. (While such a controller-initiated
interrupt is in progress, the hardware delays interrupts from
units.,) The Executive determines the correct KRB by indexing
the CTB with the controller number from the PS word in the
vector.

For a controller that allows unit operation in parallel
(overlapped seek support), the related KRB must have a table
of UCB addresses. This table allows the driver to access the
structures of the unit that generates an interrupt. When a
unit interrupts, its controller records {in the attention
summary register) the physical number of the interrupting
unit. The driver must retrieve the number and use it to
index the UCB table in the KRB to access the proper unit
control block.

To support unit operation in parallel, the KRB also contains
a queue to regulate controller access. This queue, the
controller request queue, is a list of fork blocks for driver
Processes that have requested and have been denied access to
the controller. The driver requests access to a controller.
If the controller is busy, the Executive forces the driver to
wait for access by placing the fork block in the queue of
Processes waiting for access. The Executive gives precedence
to control access over requests for data transfer by placing
positioning requests onto the front of the queue and adding

V™

13.
£
. 14.
A7
§

DEVICE DRIVER I/0 STRUCTURES

data transfer requests to the end of the queue. When a unit
is given access, the controller status is set to busy and
unit UCB address is set to connect the KRB to the owned UCB.

To indicate what unit to process on a controller initiated
interrupt, a cell in the KRB points to the unit control block
(UCB) of the unit that currently owns the KRB.

The KRB queue cells have two words. The first word pecints to
the fork block in the SCB of the next unit to get access.
The second word points to the fork block in the SCB of the
last unit to get access., If the first word is 0, then the
second word points to the first and no unit is waiting for
access to the controller,

The location represented by the Executive symbol $CTLST is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all controller tables
(CTBs) in the system. A word in each CTB is a link to the
next CTB. The last CTB in the list contains a link word of
0.

The list of controller tables is one of the two threads
through the system for device-related information. (The list
of device control blocks is the other thread.) A user-written
controller table must be 1inked into the 1list of
system-defined CTBs. This list is the mechanism by which
system routines, such as those for reconfiguration, access
I/0 data structures for hardware information.

One volume control block (VCB) exists for each mounted volume
in the system. The VCB maintains volume-~dependent control
information.

Pointers within the VCB connect to the file control block
(FCB) and window block (WB). The PFCB and WB control access
to the volume's index file, which is a file of file headers.
A1l FCBs for a volume form a linked list starting from the
index file FCB. These linkages aid in keeping file access
time to a minimum. A conventional driver does not access any
of these structures.

4

o

CHAPTER 3

EXECUTIVE SERVICES AND DRIVER PROCESSING

The Executive provides services related to I/0 drivers. Some services
are provided before a driver process is initiated and are therefore
called predriver initiation services. The predriver initiation
services are those performed by the Executive during its processing of
a QIO directive; these services are not available as Executive calls.

Predriver initiation processing extracts from the QIO directive all
1/0 support functions not directly related to the actual issuance of a
function request to a device. If the outcome of predriver 1initiation
processing does not result in the queuing of an I/O Packet to a
driver, the driver is unaware that a QIO directive was issued. Many
QIO directives do not result in the initiation of an 1/0 operation.

Other services are available to the driver after it has been given
control, either by the Executive or as the result of an interrupt.
They are available as needed by means of Executive calls.

An important concept used in this section and in Chapter 4 is the
state of a process. In RSX-11M-PLUS, a process can run in one of two
states, user or system. Drivers operate entirely in the system state;
the programming standards described in Chapter 4 apply to system—state
processes.

3.1 FLOW OF AN I/O REQUEST

Following an I/0 request through the system at the functional level
(the 1level at which this chapter is directed) requires that limiting
assumptions be made about the state of the system when a task issues a
QIO directive. The following assumptions apply:

e The system is running and ready to accept an I/0 request. All
required data structures for supporting devices attached to
the system are intact,

e The only I/0 request in the system is the sample regquest under
discussion.

e The example progresses without encountering any errors that
would prematurely terminate its data transfer; thus, no error
paths are discussed.

e The controller in guestion executes only a single operation at
a time.

3.1.1

EXECUTIVE SERVICES AND DRIVER PROCESSING

Predriver Initiation Processing

The I/0 flow proceeds as described below:

1.

Task issues QIO directive

The user program first either statically (by QIOWSC, QIOWS,
QIOSC, or QIOS) or dynamically (by QIOWSS or QIOS$S) creates a
directive parameter block (DPB) containing information about
what I/0 is to be performed on what device. Then, it issues
the directive,

All Executive directives are called by means of EMT 377. The
EMT causes the processor to push the PS and PC on the stack
and to pass control to the Executive's directive processor.

QIO Dispatching

The Executive directive dispatcher DRDSP ascertains that the
EMT 1is a QIO directive and calls the QIO directive processor
DRQIO.

First-=level validity checks

The QIO directive processor validates the logical unit number
(LUN) and the Unit Control Block (UCB) pointer. DRQIO checks
whether the LUN supplied in the directive parameter block is
a legal value. If it is not a legal value, the directive is
rejected. If the LUN is legal, DRQIO checks whether a valid
UCB pointer exists in the Logical Unit Table (LUT) for the
specified LUN. This check ascertains whether the LUN is
assigned. If the check fails, the directive is rejected. 1If
both these checks are successful, DRQIO then performs the
redirect algorithm.

Redirect algorithm

Because the UCB may have been dynamically redirected by a
Redirect command, QIO directive processing traces the
redirect linkage until the target UCB is found. The target
UCB provides the links to most of the other structures of the
device to which the I/0 operation will be directed.

Additional validity checks

The event f£lag number (EFN) is wvalidated, as well as the
address of the 1I/0 Status Block (IOSB). If either is
illegal, the directive is rejected. Immediately following
successful validation, DRQIO resets the event flag and clears
the I/0 status block,

Obtain storage for and create an I/0 Packet

The QIO directive processor now acquires a 20-word block of
dynamic storage for use as an I/0 Packet. It inserts into
the packet the device-independent data items that are used
subsequently by both the Executive and the driver in
fulfilling the I/0 request. Most items originate in the
reque8ting task's Directive Parameter Block (DPB).

At this point, DRQIO sets the directive status to +1, which
indicates directive acceptance. Note that a directive
rejection is a return to the caller with the C bit set. In
addition, a directive rejection is transparent to the driver.

sy

3.1.2

8‘

EXECUTIVE SERVICES AND DRIVER PROCESSING

Validate the function requested

If the function is legal, DRQIO checks to see whether the
unit is on-line. If the unit is off-line, the packet is
rejected. The function is one of four possible types:

Control
No~op
ACP
Transfer

Wwith the exception of Attach/Detach, contrel functions are
queued to the driver. If the bit UC.ATT is set,
Attach/Detach will also be queued to the driver. If the
requested function does not require a call to the driver, the
Executive takes the appropriate action and calls the I/0
Finish routine ($SIOFIN).

No-op functions do not result in data transfers. The
Executive performs them without calling the driver. No-ops
return a status of IS.SUC in the I/0 status block.

ACP functions may require processing by the file systenm.
More typically, the request is a read or write virtual
function that is transformed into a read or write logical
function without requiring file~system intervention. When
transformed into a read or write 1logical function, the
function becomes a transfer function (by definition).

Transfer functions are address checked and queued to the
proper driver. This means that DRQIO checks the address of
the I/0 buffer, the byte count, and the alignment requirement
for the specified device. 1f any of these checks fails,
DRQIO calls the I/0 Finish routine ($IOFIN), which returns an
I/0 error status and clears the I/0 request from the system.
1f the checks succeed, DRQIO either places the I/0 Packet in
the driver request queue according to the priority of the
requesting task or, if the UC.QUE bit is' set, gives the
packet directly to the driver. {See Section 4.4.4 for a
description of the UC.QUE bit.)

Driver Processing

Request work

To obtain work, the driver calls Get Packet ($GTPKT). SGTPKT
either provides work, if it exists, or informs the driver
that no work is available or that the SCB is busy; if no
work exists, the driver returns toc its caller. If work is
available, $GTPKT sets the device controller and unit to
busy, dequeues an I/0 request packet, and returns to the
driver.

10.

11.

EXECUTIVE SERVICES AND DRIVER PROCESSING

Issue 1/0

‘From the available data structures, the driver initiates the

required I/0 operation and returns to its caller. A
subsequent interrupt may inform the driver that the initiated
function 1is complete, assuming the device is interrupt
driven,

Interrupt processing

When a previously issued 1I/0 operation interrupts, the
interrupt causes the driver to be entered. The driver
processes the interrupt according to the programming protocol
described in Chapter 1. According to the protocol, the
driver may process the interrupt at priority 7, at the
priority of the interrupting device, or at fork level. 1If
the processing of the I/0 request associated with the
interrupt is still incomplete, the driver initiates further
I/0 on the device (Step 9). When the processing of an I/0
request is complete, the driver calls S$IODON.

I/0 Done processing

SIODON removes the busy status from the device unit and
controller, queues an AST if required, and determines whether
a checkpoint request pending for the issuing task can now be
effected. The I0SB and event flag, if specified, are
updated, and $IODON returns to the driver. The driver
branches to its initiator entry point and looks for more work
{Step 8). This procedure is followed until the driver finds
the queue empty, whereupon the driver returns to its caller
and the driver process vanishes.

Eventually, the processor is granted to another ready—-to~run
task that issues a QIO directive, starting the I/0 flow anew.

3.2 EXECUTIVE SERVICES AVAILABLE TO A DRIVER

Once a driver is given control following an I/0 interrupt or by the

Executive

driver.

However,

itself, a number of Executive services are available to the
These services are discussed in detail in Chapter 7.

four Executive services merit special emphasis because

virtually every driver in the system uses them:

Get Packet (SGTPKT)
Interrupt Save ($SINTSV)
Create Fork Process ($FORK)

I1/0 Done {(SIODON or S$SIOALT)

£

w:m%}
4

EXECUTIVE SERVICES AND DRIVER PROCESSING

3.2.1 Get Packet ($GTPKT)

The Executive, after it queues an I/0 Packet, c¢alls the appropriate
driver at its I/O initiation entry<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>