PDP-11 MACRO-11
Language Reference Manual
AA-VO27A-TC

March 1983

This document describes how to use the MACRO-11 relocatable as-
sembler to develop PDP-11 assembly language programs. Although no
prior knowledge of MACRO-11 is required, the user should be familiar
with the PDP-11 processor addressing modes and instruction set. This
manual presents detailed descriptions of MACRO-11’s features, includ-
ing source and command string control of assembly and listing func-
tions, directives for conditional assembly and program sectioning, and
user-defined and system macro libraries. The chapters on operating
procedures previously were found in two separate manuals (the
PDP-11 MACRO-11 Language Reference Manual and the IAS/RSX
MACRO-11 Reference Manual). This manual should be used with a
system-specific user's guide as well as a Linker or a Task Builder man-
ual.

This manual supersedes previous editions, Order Numbers
AA-5075B-TC, published 1980, AA-5075A-TC, published 1977, and
DEC~11-0OIMRA-B-D, published 1976.

Operating System: VAX/VMS Version 3
RSTS/E Version 8
RSX~11M Version 4
RSX~11M-PLUS Version 2

Software: MACRO-11 Version 5

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532,

To order additional documents from cutside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

First Printing, August 1977
Revised, January 1980 .
Updated, December 1981 ;

Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license. o,

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1977, 1980, 1981, 1983.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

dlilgliltlal1 g

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem~10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

M18400

PREFACE
PART I
CHAPTER
CHAPTER
' é‘i
t ’ PART I1I
CHAPTER
PN
¥ i
CHAPTER
CHAPTER

CONTENTS

MACRO~11: ASSEMBLY AND FORMATTING

1 THE MACRO-11 ASSEMBLER
1.1 ASSEMBLY PASS 1
1.2 ASSEMBLY PASS 2

2 SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS
2.2 STATEMENT FORMAT

2.2.1 Label Field

2.2.2 Operator Field

2.2.3 Operand Field

2.2.4 Comment Field

2.3 FORMAT CONTROL

PROGRAMMING IN MACRO-11 ASSEMBLY LANGUAGE

w

SYMBOLS AND EXPRESSIONS

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Unary and Binary Operators
MACRO-11 SYMBOLS
Permanent Symbols
User-Defined and Macro Symbols
DIRECT ASSIGNMENT STATEMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
CURRENT LOCATION COUNTER
NUMBERS
TERMS
EXPRESSIONS

L N S
LR Y
LI DD

WO I DU E LN NN b b b

WWWWWwwWwWwwWww Wwww
« s s e e
. .
N

=3

RELOCATION AND LINKING

wm

ADDRESSING MODES

REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE

INDEX DEFERRED MODE
IMMEDIATE MODE

Uttty ot n
« & % @ e & s 9
OO~ WN

iii

Page

ix

st
{
[

|

N b
i |
N

NNNI\IJNNN
U1 a0 L BN =

w
[
b

| [|
000NN DWW

WwwwWwwWwwwwww
i

U

[
AUUE S BWNN

[

wmmwmt{‘mmm w

PART I1II

CHAPTER

5.10
5.11
5.12
5.13
5.14

MACRO-11

N

. e e « o e 2 s
. « v s
Fo) T2 B N VS G I

*
N NI N b b et et b et e
B

.

() o) i o) JEv) BEe) B) Nie) Ue A Jo)
.
N

.

»

.
.

O =3 T U b W DD

.
.

. . 2 e v e
L T T Y

L2
B bt et e
»

L
A De S B s W W W W W e W

.
.

jo o))
. .
Lo
.
[N

o s
«

.
PRVE RN I

AIIAAAANAANINAINAINAND N
.
WIQ W WO MM~ ~J~1~d~d~1~1~1DUNUtunw
L]
R
.

. o s & »
- . v »

.

LI Y
. [

»

L

.
W D3

.

.

6.10
6.10.1
$.18.2

1
2

ABSOLUTE MODE

RELATIVE MODE

RELATIVE DEFERRED MODE

BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCTIONS

DIRECTIVES
GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST Directives
.TITLE Directive
.SBTTL Directive
.IDENT Directive
.PAGE Directive/Page Ejection
.REM Directive/Begin Remark Lines
FUNCTION DIRECTIVES
.ENABL and .DSABL Directives
Cross-Reference Directives: .CROSS
and .NOCROSS
DATA STORAGE DIRECTIVES
.BYTE Directive
.WORD Directive
ASCII Conversion Characters
LASCII Directive
.ASCIZ Directive
.RADS@ Directive
Temporary Radix-50# Control Operator
.PACKED Directive
RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators
Numeric Directives and Unary Control
Operators
Floating-Point Storage Directives
Temporary Numeric Control Operators:
“C and °F
LOCATION COUNTER CONTROL DIRECTIVES
.EVEN Directive
.0ODD Directive
.BLKB and .BLKW Directives
L.LIMIT Directive
TERMINATING DIRECTIVE: .END DIRECTIVE
PROGRAM SECTIONING DIRECTIVES
.PSECT DMrective
Creating Program Sections
Code or Data Sharing
Memory Allocation Considerations
LASECT and .CSECT Directives
.SAVE Directive
.RESTORE Directive
SYMBOL CONTROL DIRECTIVES
.GLOBL Directive
.WEAK Directive
CONDITIONAL ASSEMBLY DIRECTIVES
Conditional Assembly Block Directives
Subconditional Assembly Block Directives
Inmediate Conditional Assembly Directive
FILE CONTROL DIRECTIVES
.LIBRARY Directive
.INCLUDE Directive

iv

ME@‘?

CHAPTER MACRO DIRECTIVES

!
—

DEFINING MACROS

.MACRO Directive

.ENDM Directive

.MEXIT Directive

MACRO Definition Formatting
CALLING MACROS
ARGUMENTS IK MACRO DEFINITIONS AND MACRO
CALLS

Macro Nesting

Special Characters in Macro Arguments

Passing Numeric Arguments as Symbols

Number of Arguments in Macro Calls

Creating Local Symbols Automatically

Keyword Arguments

Concatenation of Macro Arguments
MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND
.NTYPE

.NARG Directive

.NCHR Directive

.NTYPE Directive 7-14
.ERROR AND .PRINT DIRECTIVES
INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND
. IRPC 7-17

.IRP Directive 7-17

.IRPC Directive 7-18
REPEAT BLOCK DIRECTIVE: .REPT, .ENDR T-20
MACRO LIBRARY DIRECTIVE: .MCALL 7-20
MACRO DELETION DIRECTIVE: .MDELETE 7-21

W N b bt e B et

.
.
1

..
L] *

B N

| [

NN NN NN -3
LI S B . =
* ¥ n
w3 DN D L N ke
[[} I
B W N

i
00 00~] 3

3
.

m.l\-J\!\l\J\l\JTI SR EES B S ~3

.
.

R N N I e N B
.

SRR % BRUS IS LN WA
.

RN
i
b
[RENENY

.

BN BEN BN BEN |
L]
U D I
.

L

.
.

W N
[

~J
[

bt

N

LY

.

ENIEN N N
W W~ Y h

.
0 b

PART IV OPERATING PROCEDURES

CHAPTER g IAS/RSX-11M/RSX-11M~-PLUS OPERATING PROCEDURES 8-1
8.1 RSX~-11IM/RSX~11IM-PLUS OPERATING PROCEDURES 8-1
8.1.1 Initiating MACRO~11 Under RSX-11M/
R8X-11M~-PLUS 8
8.1.1.1 Method 1 - Direct MACRO-11 Call 8
8.1.1.2 Method 2 - Single Assembly 8
8.1.1.3 Method 3 - Install, Run Immediately, and
Remove On Exit 8
8.1.1.4 Method 4 - Using the Indirect Command
Processor 8
Default File Specifications 8-
8
8
8
8

2

3 MCR Command String Format

.4 DCL Operating Procedures

5 MACRO-11 Command String Examples

IAS MACR(Q~-11 OPERATING PROCEDURES
Initiating MACRO-11 Under IAS 8-14
IAS Command String 8-14
IAS Indirect Command Files 8-16
IAS Command String Examples 8-16

CROSS-REFERENCE PROCESSOR (CREF) 8-17

IAS/RSX-11IM/RSX~-11M~PLUS FILE SPECIFICATION 8-19

MACRO-11 ERROR MESSAGES UNDER IAS/RSX-11M/

RSX-11M~-PLUS 8-20

e e 2 v ¥ e s
o« e s
B) N b

. .

o0 0 00 0D 00 00 00 00 QO QO 00 OO
U N N NI DD DD b b et b

.

CHAPTER RSTS/RT-11 OPERATING PROCEDURES

WO
.

9
1 MACRO-11 UNDER RSTS 9~
.1.1 RT-11 Through RSTS 9

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

N

[
U W
L]

-

> X OO O WO WYY

o

www
L]
(VRS

. »

. .
D bt

g oo O

=1

L T T T T
L
. s . " s .

U W N W N

W iar W W L) N bt e e

. v »
. .
. .

. .
[

L= - P N VR VS R IV N I N TR TT R T R ST IR U G gy i

L R

DmEHHROORDEOEEEE"mEm e

W B L N b

e

- . L]
e sby
L[] .]
B W

DEmmEHEmEmEEm
« 8 ¢ A s @

. s ¢ s e »

NI DU S DS

RSX Through RSTS
INITIATING MACRO-11 UNDER RT-11
RT-11 COMMAND STRING
FILE SPECIFICATION OPTIONS
CROSS-REFERENCE (CREF) TABLE GENERATION
OPTION
Obtaining a Cross-Reference Table
Handling Cross-Reference Table Files
MACRO-11 Error Messages Under RT-11

MACRO-11 CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES
MACRO-11 DIRECTIVES

ERROR MESSAGES
SAMPLE CODING STANDARD

LINE FORMAT
COMMENTS
NAMING STANDARDS
Registers
General Purpose Registers
‘Hardware Registers
Device Registers
Processor Priority
Symbols
Symbol Examples
Local Symbols
Global Symbols
Macro Names
General Symbols
PROGRAM MODULES
The Module Preface
The Module
Module Example
Mcdularity
Calling Conventions (Inter-Module/
Intra-Module)
Exiting
Success/Failure Indication
Module Checking Routines
CODE FORMAT
Program Flow
Common Exits
Code with Interrupts Inhibited
Code in System State
INSTRUCTION USAGE
Forbidden Instructions
Conditional Branches
PROGRAM SOURCE FILES

U]
B NN

WO WYY W O WWwWw
~N -~ v

—

i
o

b

(RN R N BB NN
LI R R R R Y Y T T N N I A |

|

OV D BRWWNNNNNN -

RGN Ro R ON RN R o]

|

ey

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

FIGURE

TABLE

o
.o
oW
. .
N

.

.
ad N

.

m OO0 Q@ mmmoom
N

—

et
N

aay o

W N b

L I I

DH W W
W B bt D b

!

NN ST Oy
tad B3 b =3 DY L

C’JC"H.:O\!
]
[

[LU
OB D P

NMwwwww

PDP-11 VERSION NUMBER STANDARD
Displaying the Version Identifier
Use of the Version Number in the Program

ALLOCATING VIRTUAL MEMORY

GENERAL HINTS AND SPACE-SAVING GUIDELINES
MACRC DEFINITIONS AND EXPANSIONS
OPERATIONAL TECHNIQUES

WRITING POSITION-INDEPENDENT CODE

INTRODUCTION TO POSITION-INDEPENDENT CODE
EXAMPLES

SAMPLE ASSEMBLY AND CROSS-REFERENCE LISTING

OBSOLETE MACRO-11 DIRECTIVES, SYNTAX; AND
COMMAND LINE OPTIONS

OBSOLETE DIRECTIVES AND SYNTAX
OBSOLETE COMMAND LINE OPTION

RELEASE NOTES

CHANGES -- ALL VERSIONS OF MACRO-11
CHANGES -- MACRO-11/RSX VERSION ONLY
CHANGES -- MACRO-11/RT VERSION ONLY

FIGURES

Assembly Listing Showing Local Symbol Block
Sample Assembly Results

Example of Line Printer Assembly Listing
Example of Teleprinter Assembly Listing
Listing Produced with Listing Control
Directives

Assembly Listing Table of Contents
Example of .ENABL and .DSABL Directives
Example of .BLKB and .BLKW Directives
Example of .SAVE and .RESTORE Directives
Example of .NARG Directive

Example of .NCHR Directive

Example of .NTYPE Directive in Macro
Definition ,

Example of .IRP and .IRPC Directives
Sample CREF Listing

Example of Position-Dependent Code
Example of Position-Independent Code

TABLES

Special Characters Used in MACRO-11
Legal Separating Characters

Legal Argument Delimiters

Legal Unary Operators

Legal Binary Operators

Addressing Modes

vii

D
LI B S I I I [
oW R s N Oy U b

OO W W 00N

Symbols Used in Chapter 5

Directives in Chapter §

Symbolic Arguments of Listing Control
Directives

Symbolic Arguments of Function Control
Directives

Symbolic Arguments of .PSECT Directive
Program Section Default Values

Legal Condition Tests for Conditional
Assembly Directives

Subconditional Assembly Block Directives
File Specification Default Values
MACRO~-11 File Specification Switches
DCL Command Qualifiers

.DCL Parameter Qualifiers

Default File Specification Values

File Specification Options

/C Option Arguments

01d and New Directives and Syntax

viii

Lol e 2 W SR WE T it e « JEe YR G N

| T A T I Y I |
w BN

HYWYWWOERWEWOMD

PREFACE

¥.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is intended to enable users to develop programs coded in
the MACRO-11 assembly language.

No prior knowledge of the MACRO-11 Relocatable Assembler is assumed,
but the reader should be familiar with the PDP-11 processors and
related terminology, as presented in the PDP-11 Processor Handbooks.
The reader is also encouraged to become familiar with the linking
process, as presented in the applicable system manual (see Section
#.3), because 1linking is necessary for the development of executable
programs.

If a terminal is available to the reader, he/she 1is advised to try
some of the examples in the manual or to write a few simple programs
that illustrate the concepts covered. Even experienced programmers
find that working with a simple program helps them to understand a
confusing feature of a new language.

The examples in this manual were done on an RT-11 system. MACRO-11
may also be wused on IAS/RSX~-11M, RSX-11M-PLUS and RSTS systems (see
Part IV for information about operating procedures).

It can be assumed that all references to RS8X-11IM also apply to

RSX-11M-PLUS with the exception of those in Chapter 8, which deals
with each system individually.

7.2 STRUCTURE OF THE DOCUMENT

This manual has four parts and eight appendices,

Part I introduces MACRO-11l.
Chapter 1 lists the key features of MACRO-11.
Chapter 2 identifies the advantages of following programming
standards and conventions and describes the format used in coding

MACRO-11 source programs.

Part II presents general information essential to programming with the
MACRO-11 assembly language.

Chapter 3 lists the character set and describes the symbols,

terms, and expressions that form the elements of MACRO-11
instructions.

ix

Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and linking of object modules.

Chapter 5 describes how data stored in memory can be accessed and
manipulated wusing the addressing modes recognized by the PDP-11
hardware.

Part III describes the MACRO-11 directives that control the processing
of source statements during assembly.

Chapter 6 discusses directives used for generalized MACRO-11
functions.

Chapter 7 discusses directives used in the definition and
expansion of macros.

Part IV presents the operating procedures for assembling MACRO-11
programs.

Chapter 8 covers the IAS, RSX~-11M, and RSX-11M-PLUS systems,
Chapter 9 covers the RSTS/RT-11 systems.,

Appendix A lists the ASCII and Radix~5@ character sets used in
MACRO-11 programs.

Appendix B lists the special characters recognized by MACRO-11,
summarizes the syntax of the various addressing modes used in PDP-11
processors, and briefly describes the MACRO-11 directives in
alphabetical order.

Appendix C lists alphabetically the permanent symbols that have been
defined for use with MACRO-11.

Appendix D lists alphabetically the error codes produced by MACRO-11
to lidentify wvarious types of errors detected during the assembly
process,

Appendix E contains a coding standard that is recommended practice in
preparing MACRO-11 programs.

Appendix F discusses several methods of conserving dynamic memory
space for wusers of small systems who may experience difficulty in
assembling MACRO-11 programs.

Appendix G is a discussion of position-independent code (PIC).

Appendix H contains an assembly and cross-reference listing.

Appendix I contains obsolete MACRO-11 directives, syntax, and command
line options.

Appendix J describes the differences from the 1last release of
MACRO-11.

.3 ASSOCIATED DOCUMENTS

For descriptions of documents associated with this manual, refer to
the applicable documentation directory listed below:

IAS pocumentation Directory

RSX-11M-PLUS Information Directory and Index

RSX-11M/RSX-11S Information Directory and Index

Guide to RT-11 Documentation

RSTS/E Documentation Directory

#.4 DOCUMENT CONVENTIONS

The color red is used in command string examples to indicate user
type-in.

The symbols defined below are used throughout this manual.

Symbol Definition

[1] Brackets indicate that the enclosed argument is
optional.

.. Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

UPPER-CASE Upper-case characters indicate elements of the language

CHARACTERS that must be used exactly as shown.

lower-case Lower-case characters indicate elements of the language

characters that are supplied by the programmer.

(n) In some instances the symbol (n) is wused following a
number to indicate the radix. For example, 100(8)

indicates that 1#¢ is an octal wvalue, while 100(10)
indicates a decimal value.

xX1i

LN

AME
A

)

CHAPTER 1

THE MACRO-11 ASSEMBLER

MACRO-11 provides the following features:
1. Source and command string control of assembly functions
2. Device and filename specifications for input and output files
3. Error listing on command output device

4. Alphabetized, formatted symbol table 1listing; optional
cross~reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries
18. Comprehensive system macro library

11. Extensive source and command string control of listing
functions.

MACRO-11 assembles one or more ASCII source files containing MACRO-11
statements into a single relocatable binary object file. The output
of MACRO-11 consists of a binary object file and a file containing the
table of contents, the assembly listing, and the symbol table. An
optional cross-reference listing of symbols and macros is available.
A sample assembly listing is provided in Appendix H.

1.1 ASSEMBLY PASS 1

During pass 1, MACRO-11 locates and reads all required macros from
libraries, builds symbol tables and program section tables for the
program, and performs a rudimentary assembly of each source statement.

In the first step of assembly pass 1, MACRO-11 initializes all the
impure data areas (areas containing both code and data) that will be
used internally for the assembly process. These areas include all
dynamic storage and buffer areas used as file storage regions.

THE MACRO-11 ASSEMBLER

MACRO-11 then calls a system subroutine which transfers a command line
into memory. This command 1line contains the specifications of all
files to be used during assembly. After scanning the command line for
pProper syntax, MACRO-11 initializes the specified output files. These
files are opened to determine if valid output file specifications have
been passed in the command line.

MACRO-11 now initiates a routine which retrieves source lines from the
input file. If no input file is open, as is the case at the beginning
of assembly, MACRO-11 opens the next input file specified 1in the
command 1line and starts assembling the source statements. MACRO-11
first determines the length of the instructions, then assembles them
according to length as one word, two words, or three words.

At the end of assembly pass 1, MACRO-11 reopens the output files
described above. Such information as the object module name, the
program version number, and the global symbol directory (GSD) for each
program section are output to the object file to be used later in
linking the object modules. After writing out the GSD for a given
program section, MACRO-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACRO-11 then writes out GSD records to the object file for these
symbols. This process is done for each program section.

1.2 ASSEMBLY PASS 2

On pass 2 MACRO-11 writes the object records to the output file while
generating both the assembly listing and the symbol table listing for
the program. A cross-reference listing may also be generated.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-11-detected errors are flagged with an error code as the
assembly listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records that hold the information necessary
for linking the object file.

The information in the object file, when passed to the Task Builder or
Linker, enables the global symbols in the object modules to be
associated with absolute or virtual memory addresses, thereby forming
an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This informetion is presented in the applicable
system manual ({see Section 9.3 in the Preface).

P

iy %
=

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Programming standards and conventions allow code written by a person

{or group) to be easily understood by other people. These standards
also make the program easier to:

Plan
Comprehend
Test
Modify
Convert

The actual standard used must meet local user requirements. A sample
coding standard 1is provided in Appendix E. Used by DIGITAL and its
users, this coding example simplifies both communications and the
continuing task of software mzintenance and improvement.

2.2 STATEMENT FORMAT

A source program is composed of assembly-language statements. Each
statement must be completed on one line. Although a line may contain
132 characters {a longer line causes an error (L) in the assembly
listing), a line of 8# characters 1is recommended because of
constraints imposed by listing format and terminal line size. Blank
lines, although legal, have no significance in the source program.

A MACRO-11 statement may have as many as four fields. These fields
are identified by their order within the statement and/or by the
separating characters between the fields. The general format of a
MACRO-11 statement is:

[Label:] Operator Operand [;Comment {(s)]
The label and comment fields are optional. The operator and operand
fields are interdependent; in other words, when both fields are

present in a source statement, each field is evaluated by MACRO-11 in
the context of the other.

A statement may contain an operator and no operand, but the reverse is
not true. A statement containing an operand with no operstor is
illegal and is interpreted by MACRO-11 during assembly as an implicit
.WORD directive (see Section A.3.2).

MACRO-11 interprets and processes source program statements one by
one. Each statement causes MACRO-11 either to perform a specified
assembly process or to generate one or more binary instructions or
data words.

SOURCE PROGRAM FORMAT

2.2.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The current location counter is used by MACRO-11 to assign
memory addresses to the source program statements as they are
encountered during the assembly process. Thus, a label is a means of
symbolically referring to a specific statement.

When a program section is absolute, the value of the current location
counter is absolute; its value references an absolute virtual memory
address (such as location 10¢). Similarly, when a program section is
relocatable, the value of the current location counter is relocatable;
a relocation bias calculated at link time is added to the apparent
value of the current 1location counter to establish its effective
absolute virtual address at execution time. (For a discussion of
program sections and their attributes, see Section 6.7.)

If present, & label must be the first field in a source statement and
must be terminated by a colon (:). For example, if the value of the
current location counter is absolute 1#4#(8), the statement:

ABCD: MOV A,B

assigns the value 168#(8) to the label ABCD. If the location counter
value were relocatable, the final value of ABCD would be 18#(8)+K,
where K represents the relocation bias of the program section, as
calculated by the Task Builder or Linker at link time,.

More than one label may appear within a single label field. Each
label so specified is assigned the same address value. For example,
if the value of the current location counter is 100(8), the multiple
labels in the following statement are each assigned the value 168(8):

ABC: SDD: A7.7: MoV A,B

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
$DD:
A7.7: Mov A,B

likewise cause the same value to be assigned to all three labels.
This second method of assigning multiple labels is preferred because
positioning the fields consistently within the source program makes
the program easier to read (see Section 2.3).

A double colon (::) defines the label as a global symbol. For
example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.8) or by independently assembled object modules,
References to this label in other modules are resolved when the
modules are linked as a composite executable image.

e

SOURCE PROGRAM FORMAT

The legal characters for defining labels are:

A through Z

@ through 9
{(Period)
(Dollar Sign)

Y »

NOTE

By convention, the dollar sign ($) and
period (.) are reserved for wuse in
defining DIGITAL system software
symbols. Therefore these characters
should not be used in defining labels in
MACRO-11 source programs.

A4 label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
Source program. An error code (M) is generated in the assembly
listing if the first six characters in two or more labels are the
same,.

A symbol used as a label must not be redefined within the source
program. If the symbol 1is redefined, a 1label with a multiple
definition results, causing MACRO-11 to generate an error code (M) in
the assembly 1listing. Furthermore, any statement in the source
program which references a multi~defined label generates an error code
{D) in the assembly listing.

‘2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,

or a macro call. Chapters 6 and 7 describe these three types of
operators.

When the operator is an instruction mnemonic, a machine instruction is
generated and MACRO-11 evaluates the addresses of the operands which
follow. When the operator is a directive MACRO-11 performs certain
control actions or processing operations during the assembly of the
source program. When the operator is a macro call, MACRO-11 inserts
the code generated by the macro expansion.

Leading and trailing spaces or tabs in the operator field have no
significance; such characters serve only to separate the operator
field from the preceding and following fields.

An operator 1is terminated by a space, tab, or any non-RADS@
character*, as in the following examples:

MOV A,B ;The space terminates the operator MOV.
MOV A,B ;The tab terminates the operator MOV.
MOvea,B ;The @ character terminates the operator MOV,

* Appendix A.2 contains a table of Radix-50 characters.

2-3

SOURCE PROGRAM FORMAT

Although the statements above are all equivalent in function, the
second statement 1is the recommended form because it conforms to
MACRO-11 coding conventions.

2.2.3 Operand Field

When the operator is an instruction mnemonic (op code), the operand
field contains program variables that are to be evaluated/manipulated
by the operator. The operand field may also supply arguments to
MACRO-11 directives and macro calls, as described in Chapters 6 and 7,
respectively.

Operands may be expressions or symbols, depending on the operator.
Multiple expressions used in the operand field of a MACRO-11 statement
must be separated by a comma; multiple symbols similarly used may be
delimited by any legal separator (a comma, tab, and/or space). An
operand should be preceded by an operator field; if it is not, the
statement is treated by MACRO-11 as an implicit .WORD directive (see
Section 6.3.2).

When the operator field contsins an op code, associated operands are
always expressions, as shown in the following statement:

MOV RG,A+2 (R1)

On the other hand, when the operator field contains a MACRO-11
directive or a macro call, associated operands are normally symbols,
as shown in the following statement:

.MACRO ALPHA SYM1l,SYM2

Refer to the description of each MACRO-11 directive (Chapter 7) to
determine the type and number of operands required in issuing the
directive.

The operand field is terminated by a semicolon when the field |is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ;Comment field
the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the

beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the scurce line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the

end of the line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage~-return, line-feed,
vertical-tab or form-~feed. All other characters appearing in the

comment field, even special characters reserved for use in MACRO-11,
are checked only for ASCII legality and then included in the assembly
listing &s they appear in the source text.

™

’”‘D}

& %,

SOURCE PROGRAM FORMAT

All comment fields must begin with a semicolon (;). When lengthy
comments. extend beyond the end of the source line (column 88), the
comment may be resumed in a following line. Such a line must contain
a leading semicolon, and it is suggested that the body of the comment
be continued in the same columnar position in which the comment began.
A comment 1line can also be included as an entirely separate line
within the code body.

Comments do not affect assembly processing or program execution.

However, comments are necessary in source listings for later analysis,
debugging, or documentation purposes.

2.3 FORMAT CONTROL
Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program.
DIGITAL's standard source line format is shown below:

Label - begins in column 1

Operator - begins in column 9

Operands - begin in column 17

Comments ~ begin in column 33.
These formatting conventions are not mandatory; free-field coding is
permissible. However, note the increase readability after formatting
in the example below:

REGTST:BIT#MASK,VALUE;COMPARES BITS IN OPERANDS.

1 9 17 33 {columns)

REGTST: BIT #MASK, VALUE ;Compares bits in operands.
Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO-11 directives that may be specified

to accomplish desired formatting operations. Appendix E contains a
sample coding standard.

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions: the
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions.

3.1 CHARACTER SET
The following characters are legal in MACRO-~11 source programs:

1. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2.1, .ENABL LC).

2. The digits ¢ through 9.

3. The characters . {period) and § (dollar sign). These
characters are reserved for use as Digital Equipment
Corporation system program symbols.

4. The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO-11

Character Designation Function
: Colon Label terminator,
HH Double colon Label terminator; defines the

label as a global label.

= Equal sign Direct assignment operator and
macro keyword indicator.
== Double equal Direct assignment operator;
sign defines the symbol as a global
symbol,
=: Equal sign colon Direct assignment operator;
macro keyword indicator;

causes error (M) in listing if
an attempt is made to change
the value of the symbol.

{continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1

(Cont.)

Special Characters Used in MACRO-11

Character

Designation

Function

]
i

Double equal
sign colon

Percent sign
Tab
Space

Number sign

At sign

Left parenthesis
Right parenthesis
Period

Comma

Semicolon

Left angle
bracket

Right angle
bracket

Plus sign

Minus sign

Asterisk

Slash
Ampersand
Exclamation point

Double quote

Direct assignment operator;
defines the symbol as a global
symbol; causes error (M) in
listing if an attempt is made
to change the value of the
symbol.

Register term indicator,

Item or field terminator.

Item or field terminator.

Immediate expression
indicator.

Deferred addressing indicator.
Initial register indicator.
Terminal register indicator.
Current location counter.
Operand field separator.
Comment field indicator,.

Initial argument or expression
indicator.

Terminal argument or
expression indicator.

Arithmetic addition operator
or autoincrement indicator,.

Arithmetic subtraction
operator or autodecrement
indicator,.

Arithmetic multiplication
operator.

Arithmetic division operator.
Logical AND operator.
Logical inclusive OR operator.

Double ASCII character
indicator.

{(continued on next page)

-

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACRO-11

Character Designation Function
' Single quote Single ASCII character
indicator; or concatenation
indicator.
° Up arrow or Universal wunary operator or
circumflex argument indicator.
\ Backslash Macro call numeric argument

indicator.

3.1.1

Separating and Delimiting Characters

Legal separating characters and legal argument delimiters are defined
in Tables 3-2 and 3-3 respectively.

Table 3-2
Legal Separating Characters

Character Definition Usage
Space One or more spaces A space is a legal separator
and/or tabs between instruction fields and

between symbolic arguments
within the operand field.
Spaces within expressions are
ignored {see Section 3.9}.

Comma A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field must be
separated by a comma.

3.1.2

Illegal Characters

A character is illegal for one of two reasons:

l‘

If a character is not an element of the recognized MACRO-11
character set, it 1is replaced in the listing by a question
mark, and an error <code (I) is printed in the assembly
listing. The exception to this is an embedded null which,
when detected, terminates the scan of the current line.

If a legal MACRO-11 character is used in a source statement
with illegal or questionable syntax, an error code (Q) is
printed in the assembly listing.

SYMBOLS AND EXPRESSIONS

Table 3-3
Legal Argument Delimiters

Character Definition Usage
<oan? Paired angle Paired angle brackets may be
brackets used anywhere in a program to

enclose an expression for
treatment as a single term.
Paired angle brackets are also

used to enclose

a macro

argument, particularly when

that argument contains
separating characters {see
Section 7.3).

“X...X Up-arrow (unary This construction is
operator) con- equivalent in function to the
struction, where paired angle brackets
the up-arrow is described above and is
followed by an generally used only where the
argument that is argument itself contains angle
bracketed by any brackets.

paired printing
characters (x).

3.1.3 Unary and Binary Operators

Legal MACRO-11 unary operators are described in Table
operators are used in connection with single terms
operands) to indicate an action to be performed on that
assenbly. Because a term preceded by a unary operator

3-4, Unary
(arguments or
term during
is considered

to contain that operator, a term so specified can be used alone or as

an element of an expression.

Table 3-4
Legal Unary Operators

Unary
Operator Explanation Example Effect
+ Plus sign +A Produces the positive
value of A.
- Minus sign -2 Produces the negative
{(2's complement)

value of A.

(continued on next page)

AT A

SYMBOLS AND EXPRESSIONS

Table 3-4 (Cont.)
Legal Unary Operators

Unary

Operator Explanation Example Effect

~ Up-arrow, universal "Cc24 Produces the 1's
unary operator. complement value of
(This usage is 24(8).
described in
detail in “D127 Interprets 127 as a
Section 6.4.) decimal number.

“F3.¢0 Interprets 3.0 as a
l-word,
floating-point
number.

“034 Interprets 34 as an

octal number.

“Bl14@g111l Interprets 11g@e9111
as a binary number.

“RABC Evaluates ABC in
Radix-5¢ form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D5@ (Equivalent to -<"D58>)
“C"012 (Eguivalent to "C<T012>)

Legal MACRO-11 binary operators are described in Table 3-5. In
contrast to unary operators, binary operators specify actions to be
performed on multiple items or terms within an expression.

Table 3-5
Legal Binary Operators

Binary

Operator Explanation Example

+ Addition A+B

- Subtraction A-B

* Multiplication A*B (signed 16-bit
product returned)

/ Division A/B (signed 16-bit
quotient returned)

& Logical AND A&B

! Logical inclusive OR AlB

SYMBOLS AND EXPRESSIONS

All binary operators have equal priority. Terms enclosed by angle
brackets are evaluated first, and remaining operations are per formed
from left to right, as shown in the examples below:

.WORD 1+2%*3 ;Equals 11(8}.
.WORD 1+<2%*3> ;Equals 7(8).

3.2 MACRO-11 SYMBOLS

MACRO-11 maintains a symbol table for each of the three symbol types
that may be defined in a MACRO-11 source program: the Permanent
Symbol Table (PST), the User Symbol Table (UST), and the Macro Symbol
Table (MST). The PST contains all the permanent symbols defined
within (and thus automatically recognized by) MACRO-11 and is part of
the MACRO-11 image. The UST (for user-defined symbols) and MST (for
macro symbols) are constructed as the source program is assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-11 image and need not
be defined before being used in the operator field of a MACRO-11
source statement (see Section 2.2.2).

3.2.2 User-~Defined and Macro Symbols

User-defined symbols are those symbols that are equated to a specific
value through a direct assignment statement (see Section 3.3), appear
as labels (see Section 2.2.1), or act as dummy arguments (see Section
7.1.1). These symbols are added to the User Symbol Table as they are
encountered during assembly.

Macro symbols are those symbols used as macro names (see Section 7.1).

They are added to the Macro Symbol Table as they are encountered
during assembly.

The following rules govern the creation of user-defined and macro
symbols:

1. Symbols can be composed of alphanumeric characters, dollar
signs ($), and periods (.) only (see Note below).

2. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

3. The first six characters of a symbel must be unique. A
symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII 1legality and are not otherwise evaluated or
recognized by MACRO-11.

4. Spaces, tabs, and illegal characters must not be embedded

within a symbol. The legal MACRO-11 character set is defined
in Section 3.1.

”“’W}
R

SYMBOLS AND EXPRESSIONS

NOTE

The dollar sign ($) and period (.)
characters are reserved for use in
defining Digital Equipment Corporation
system software symbols. For example,
READS is a file-processing system macro.
The user 1is «¢autioned not to employ
these characters in constructing
user-defined symbols or macro symbols in
order to avoid possible conflicts with
existing or future Digital Eguipment
Corporation system software symbols.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be any one of the three symbol types
described above; permanent, user-defined, or macro. To determine the
value of an operator-field symbol, MACRO-11 searches the symbol tables

in the following order:
1. Macro Symbol Table
2. Permanent Symbol Table
3. User~-Defined Symbol Table

This search order allows permanent symbols to be used as macro
symbols. But the wuser must keep in mind the sequence in which the
search for symbols 1s performed in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the search order is:
1. User-Defined Symbol Table
2. Permanent Symbol Table

Depending on their use in the source program, user-defined symbols

have either a 1local (internal) attribute or a global (external)
attribute.

Normally, MACRO-11 treats all user-defined symbols as local, that |is,
their definition is 1limited to the module in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

1. Use of the .GLOBL directive (see Section 6.8.1).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal sign (==) or double equal colon sign
(==:) in a direct assignment statement (see Section 3.3).

‘All symbols within a module that remain undefined at the end of

assembly are treated as default global references,

SYMBOLS AND EXPRESSIONS

NOTE

Undefined symbols at the end of assembly
are assigned a value of ¢ and placed
into the user~defined symbol table as
undefined default global references. 1If
the .DSABL GBL directive is in effect,
however, (see Section 6.2.1) the
statement containing the undefined
symbol is flagged with an error code (U)
in the assembly listing.

Global symbols provide linkages between independently~assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer control throughout execution. These
global symbols are resolved at link time, ensuring that the resulting
image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
The general format for a direct assignment statement is:
symbol=expression
or
symbol==expression

where: expression - can have only one level of forward reference
(see 5. below).

— cannot contain an undefined global reference.
The colon format for a direct assignment statement is:
symbol=:expression
or
symbol==:expression

where: expression - can have only one level of forward reference
(see 5. below).

- cannot contain an undefined global reference.
All the direct assignment statements above allow the user to equate a

symbol with a specific value. After the symbol has been defined it is
entered into the User-Defined Symbol Table. If the general format is

used (= or ==) the value of the symbol may be changed in subsequent
direct assignment statements. 1If, however, the colon format is used
(=: or ==:} any attempt to change the value of the symbol will

generate an error (M) in the assembly listing.

A direct assignment statement embodying either the double equal (==
sign or the double equal colon (==:) sign, as shown above, defines the
symbol as global (see Section 6.8.1).

vy

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements.

Example 1:

A=10 ;Direct assignment

B==30 ;Global assignment

A=15 ;Legal reassignment

L=:5 s;Equal colon assignment
M==:A+2 ;Double equal colon assignment

iM becomes equal to 17

L=4 ;Illegal reassignment
;M error is generated

Example 2:

C:

D=, ;The symbol D is equated to ., and
E: MOV #1,ABLE ;the labels C and E are assigned a

;value that is equal to the location
;of the MOV instruction.

The code in the second example above would not usually be used and is
shown only to illustrate the performance of MACRO~11 in such
situations. See Section 3.6 for a description of the period (.) as
the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=), double equal sign (==), equal colon sign
(=:) or double equal colon sign (==:) must separate the
symbol from the expression defining the symbol's wvalue.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement,

4. A direct assignment statement may be followed only by a
comment field.

5. Only one 1level of forward referencing is allowed. The
following example would cause an error code (U) in the
assembly listing on the line containing the illegal forward
reference:

X=Y (Illegal forward reference)
Y=2 (Legal forward reference)
Z=1

SYMBOLS AND EXPRESSIONS

Although one 1level of forward referencing 1is allowed for local
symbols, no forward referencing 1is allowed for global symbols., .In
other words, the expression being assigned to a global symbeol can
contain only previously defined symbols. A forward reference in a
direct assignment statement defining a global symbol will cause an
error code (A) to be generated in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered @

through 7 and can be expressed in the source program in the following
manner:

30
%31

87

where $ indicates a reference to a register rather than a location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.

The register definitions listed below are the normal default wvalues
and remain wvalid for all register references within the source
program.

ROA=%0 ;Register ¢ definition.
R1=%1 ;Register 1 definition.
R2=%2 ;Register 2 definition.
R3=%3 ;Register 3 definition.
R4=%4 ;Register 4 definition.
R5=%5 ;Register 5 definition.
SP=%6 ;Stack pointer definition.
PC=%7 ;Program counter definition.

Registers 6 and 7 are given special names bhecause of their wunique
system functions. The symbolic default names assigned to the
registers, as listed above, are the conventional names used in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
advised to follow these conventions.

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value between # and 7, inclusive, or
an error code (R) will appear in the assembly listing. Although you
can reassign the standard register symbols through the wuse of the
.DSABL REG directive (see Section 6.2.1), this practice 1is not
recommended. An attempt to redefine a default register symbol without
first specifying the .DSABL REG directive to override the normal
register definitions causes that assignment statement to be £flagged
with an error code (R) in the assembly listing. All non-standard
register symbols must be defined before they are referenced 1in the
source program.

T

-

SYMBOLS AND EXPRESSIONS

The % character may be used with any legal term or expression to
specify a register. For example, the statement i !

CLR $3+1

is equivalent in function to the statement
CLR 4

and clears the contents of register 4.

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4,

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

138
278
59$

1948

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:
ALPHA=EXPRESSION
is a direct assignment statement (see Section 3.3) but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, .ASECT, or .RESTORE directive
in the source program (see Figure 3-1).

3. The range of a local symbol block is delimited through
MACRO-11 directives, as follows:

Starting delimiter: L(ENABL LSBR (see Section 6,2.1)

SYMBOLS AND EXPRESSIONS

Ending delimiter: .ENABL LSB

or
one of the following:

Symbolic label (see Section 2.2.1)
.PSECT (see Section 6.7.1)

+CSECT (see Section 6.7.2)

.ASECT (see Section 6.7.2)
+RESTORE (see Section 6.7.4)

encountered after a .DSABL LSR {see
Section 6.2.1).

Local symbols provide a convenient means of generating labels for
branch instructions and other such references within local symbol
blocks. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. In addition,
the use of local symbols differentiates entry-point labels from 1local
labels, since local symbols cannot be referenced from outside their
respective local symbol blocks. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings and require less
symbol table space than other types of symbols. Their use is
recommended.

When defining local symbols, use the range from 1§ to 29999% first.
Local symbols within the range 30000$ through 655358, inclusive, can
be generated automatically as a feature of MACRO-11. Such local
symbols are wuseful in the expansion of macros during assembly (see
Section 7.3.5).

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local symbol block, each symbol
represents a different address wvalue. Such a multi-defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

1 it
2 i Simrle illustration of local swvmbols$ the second block is delipited
3 3 bw the lasbel XCTFPAS.
4 i
5
6 000000 012700 XCTPRB! MOV $IMPURE RO iPoint to impure area
0000005
7 000004 005020 1% CLR (ROX+ iClear a word
8 000006 020027 cHpP RO #IMPURT iTest if 8t tor of area
0000006
? 000012 001374 BNE 1s fIterate if not
i? iFall in to rerform rass initislization
12 000014 012700 XCTPAS! MOV $INPPASYRO iPoint to rass storassde ares
0000006
13 000020 005020 1i%: CLR (ROX4+ iClear the area
14 000022 020027 cHp RO $IMPPAT iTest it at tor of ares
0000006
15 000024 001374 BNE is ilterate of not
14 000030 000207 RTS PC iReturn if so

Figure 3-1 Assembly Listing Showing Local Symbol Block

)

SYMBOLS AND EXPRESSIONS

3.6 CURRENT LOCATION COUNTER

The period (.} is the symbol for the current location counter. When
used in the operand field of an instruction, the period represents the
address of the first word of the instruction, as shown in the first
example below. When wused in the operand field of a MACRO-11
directive, it represents the address of the current byte or word, as
shown in the second example below.

A: MOV $#.,R0 ;iThe period (.) refers to the address
;of the MOV instruction.

(The function of the number sign (#) is explained in Section 5.9.)

SAL=#
.WORD 177535,.+4,SAL ;The operand .+4 in the .WORD
;jdirective represents a value
;that is stored as the second
;of three words during
;assembly.

Assume that the current value of the location counter is 569. During
assembly, MACRO-11 reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with 1location 508. The operands
accompanying the .WORD directive determine the values so stored. The
value 177535 is thus stored in location 588. The value represented by
.+4 is stored in location 5@2; this value is derived as the current
value of the location counter {(which is now 582), plus the absolute
value 4, thereby depositing the value 586 in location 5@2. Finally,
the value of SAL, previously equated to @, is deposited in location
504,

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
508 177535
502 506
504]

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-11 resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the location
counter can be changed through a direct assignment statement of the
following form:

.=expression
The current location counter symbol (.) 1is either absolute or

relocatable, depending on the attribute of the current program
section.

SYMBOLS AND EXPRESSIONS

The attribute of the current location counter can be changed only
through the program sectioning directives (.PSECT, .ASECT, .CSECT and
.RESTORE), as described in Section 6.7. Therefore, assigning to the
counter an expression having an attribute different than that of the
current program section will generate an error code (A) in the
assembly listing.

Furthermore, an expression assigned to the counter may not contain a
forward reference (a reference to a symbol that is not previously
defined). The user must also be sure that the expression assigned
will not force the counter into another program section, even if both
sections involved have the same relocatability. Either of these
conditions causes MACRO-11 to generate incorrect object file code, and
may cause statements following the error to be flagged with an error
code (P) in the assembly listing.

The following coding illustrates the use of the current 1location
counter:

ASECT
.=500 ;Set location counter to
;absolute 508 (octal).
FIRST: MOV .+10,COUNT ;The label "FIRST" has the value

;580 (octal) .
;++10 equals 51¢(octal). The
;contents of the location
;510 (octal) will be deposited
;in the location "COUNT".

.=520 ;The assembly location counter
snow has a value of
;absolute 52@ (octal).

SECOND: MOV . y INDEX ;The label "SECOND" has the
;value 520 (octal).
: The contents of location
;520 (octal), that is, the binary
;code for the instruction
;itself, will be deposited in the
;location "INDEX".

.PSECT

=.+20 ;Set location counter to
;relocatable 28 of the
;unnamed program section.

THIRD: .WORD 7] ;The label "THIRD" has the
;value of relocatable 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1908, each of the following statements:
.=.+40

or

.BLKB 4¢

or

.BLKW 24
reserves 40(8) bytes of storage space in the source program, The

.BLKB and .BLKW directives, however, are the preferred ways to reserve
storage space (see Section 6.5.3).

SYMBOLS AND EXPRESSIONS

3.7 NUMBERS

MACRO~-11 assumes that all numbers in the source program are to be
interpreted 1in octal radix, unless otherwise specified. An exception
to this assumption is that operands associated with Floating Point
Processor instructions and Floating Point Data directives are treated
as decimal (see Section 6.4.2). This default radix can be altered
with the L.RADIX directive (see Section 6.4.1.1). Also, individual
numbers can be designated as decimal, binary, or octal numbers through
temporary radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the current radix, an error code {N) is generated in the
assembly listing. However, MACRO-11 continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

Negative numbers must be preceded by a minus sign; MACRO-11
translates such numbers into two's complement form. Positive numbers
may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits (greater than
177777(8)),. is truncated from the left and flagged with an error code
{T) in the assembly listing.

Numbers are always considered to be absolute values; therefore, they
are never relocatable.

Single-word floating-point numbers may be generated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 6 2
Sign 8-bit 7-bit
Bit Exponent Mantissa

Refer to the appropriate PDP-1l Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 16~bit wvalue is
used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated
as follows:

A. A period (.) specified in an expression causes the value
of the current location counter to be used.

B. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

C. A permanent symbol's basic value is used, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

SYMBOLS AND EXPRESSIONS

D. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see Section 6.2.1) 1is in effect, the automatic global
reference default function of MACRO-11 is inhibited, and
the statement containing the undefined symbol is flagged
with an error code (U) in the assembly listing.

3. A single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction is explained in detail 1in Section
6.3.3.

4. An expression enclosed in angle brackets (<>). Any
expression so enclosed is evaluated and reduced to a single
term before the remainder of the expression in which it
appears 1is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).*

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators (see Table 3-5). Expressions reduce to a 16~bit value. The

evaluation of an expression includes the determination of its
attributes. A resultant expression value may be any one of four types
(as described 1later in this section): relocatable, absolute,

external, or complex relocatable.

Expressions are evaluated from left to riaht with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:*

—-+-A
is equivalent to:

=<+<-A>>

* The maximum depth of an expression is governed by the MACRO-11
assembler's expression stack space. If an expression exceeds the
assembler's maximum expression depth, the statement is marked with an
(E) error, and processing continues.

3-16

&

SYMBOLS AND EXPRESSIONS

A missing term, expression, or external symbol is interpreted as a
Zero. A missing or illegal operator terminates the expression
analysis, causing errcor codes (A} and/or (Q), to be generated in the
assembly 1listing, depending on the context of the expression itself.
For example, the expression:

A+ B 177777
is evaluated as
A+ B

because the first non-blank character following the symbol B is not a
legal binary operator, an expression separator (a comma), or an
operand field terminator (a semicolon or the end of the source line).

NOTE

Spaces within expressions can serve as
delimiters only between symbols, in

other words, the expressions
A+ B
and
A+B

are the same, but the symbols
B17
and
B 17

are not (B 17 is not a single symbol).

At assembly time the value of an external (global) expression is equal
to the value of the absolute part of that expression. For example,
the expression EXTERN+A, where "EXTERN" is an external symbol, has a
value at assembly time that 1is equal to the value of the internal
(local) symbol A. This expression, however, when evaluated at 1link
time takes on the resolved value of the symbol EXTERN, plus the value
of symbol A.

Expressions, when evaluated by MACRO-11, are one of four types:
relocatable, absolute, external, or complex relocatable. The
following distinctions are important:

1. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears; it will have an offset value added at 1link time.
Terms that contain labels defined 1in relocatable program
sections will have a relocatable value; similarly, a period
(.) 1in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value.

SYMBOLS AND EXPRESSIONS

2. An expression is absolute if its wvalue 1is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable

expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
is an absolute expression. This is because every term in a
program section has the same relocation bias. When one term
is subtracted from another, the resulting bias is zero.
MACRO-11 can then treat the expression as absolute and reduce
it to a single term upon completion of the eXxpression scan.
Terms that contain labels defined in an absolute section will
also have an absolute value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression 1is only partieslly defined following
assembly and must be resolved at link time.

4. An expression is complex relocatable if any one of the
following conditions applies:

- It contains a global reference and a relocatable symbol.
- It contains more than one global reference.

- It contains relocatable terms belonging to different
program sections.

- The value resulting from the expression has more than one
level of relocation. For example, 1if the relocatable
symbols TAGl and TAG2, associated with the same program
section, are specified in the expression TAGl+TAG2, two
levels of relocation will be introduced, since each symbol
is evaluated in terms of the relocation bias in effect for
the program section.

- An operation other than addition is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions 1is completed at link time. The maximum number of terms
that can be specified in a complex expression is 1limited by the
maximum size of the object record. The maximum number of terms is 20
{decimal).

£ ;!

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11 is an object module that must be processed or
linked before it can be locaded and executed. Essentially, linking
fixes (makes absolute) the values of relocatable or external symbols
in the object module, thus transforming the object module, or several
object modules, into an executable image.

To allow the value of an expression to be fixed at link time, MACRO-11
outputs certain instructions in the object file, together with other
required parameters. For relocatable expressions 1in the object
module, the base of the associated relocatable program section is
added to the value of the relocatable expression provided by MACRO-11.
For external expression values, the value of the external term in the
expression (since the external symbol must be defined in one of the
other object modules being 1linked together}) is determined and then
added to the absolute portion of the external expression, as provided
by MACRO-11.

All instructions that require modification at link time are flagged in
the assembly 1listing, as illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis at link time is required in order to fix the value
of the expression.

EXAMPLE:
#85065 CLR RELOC (R5) ;Assuming that the value of the
ppona0’ ;symbol "RELOC", 40, is relocatable
;the relocation bias
;will be added to this value.
P@d5065 CLR EXTERN (R5) ;iThe value of the symbol "EXTERN" is
poRAGAG ;assembled as zero and is

;resolved at link time.

RELOCATION AND LINKING

295065 CLR EXTERN+6 (RS) ;The value of the symbol "EXTERN"
gooaneg ;is resolved at link time
;and added to
;the absolute portion (+6) of
;the expression.

#05865 CLR —-<EXTERN+RELOC>(R5) ;This expression is complex

2o0aaac ;jrelocatable because it requires
;the negation of an expression
;that contains a global "EXTERN"
;reference and a relocatable term.

For a complete description of object records output by MACRO-11, refer
to the applicable system manual (see Section #.3 in the Preface).

s ™

CHAPTER 5

ADDRESSING MODES

To understand how the address modes operate and how they assemble, the
action of the program counter must be understood. The key rule to
remember is:

"whenever the processor implicitly uses the program counter
(PCY to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed.”

The PC always contains the address of the next word to be fetched.
This word will be either the address of the next instruction to be
executed, or the second or third word of the current instruction.

Table 5-1 lists the address modes, and Table 5-2 1lists the symbols
used in this chapter to describe the address modes. Each mode of
address in the chapter is illustrated using either the single operand
instruction CLR or the double operand instruction MOV.

Table 5-1
Addressing Modes

Section
Mode Form Reference

Register mode* R 5.1
Register deferred mode* @R or (ER) 5.2
Autoincrement mode* (ER)+ 5.3
Autoincrement deferred mode¥* @ (ER)+ 5.4
Autodecrement mode¥* -(ER) 5.5
Autodecrement deferred mode* @- (ER) 5.6
Index mode** E(ER) 5.7
Index deferred mode** @E (ER) 5.8
Immediate mode** #E 5.9
Absolute mode** @#E 5.10
Relative mode** E 5.11
Relative deferred mode*¥* @E 5.12
Branch Address 5.13

* Does not increase the length of an instruction.

** Adds one word to the instruction length for each cccurrence of an
operand of this form.

ADDRESSING MODES

Table 5-2
Symbols Used in Chapter 5

Symbol Explanaticn
E Any expression, as defined in Chapter 3.
R A reglister expression; in other words, any

expression containing a term preceded by a percent
sign (%) or a symbol previously equated to such a
term, as shown below:

R@#=%0 ;jGeneral register 9.
R1=RO+1 ;General register 1.
R2=1+%1 ;General register 2.

This symbol may also represent any of the normal
default register definitions (see Section 3.4).

ER A register expression or an absolute expression in
the range ¢ to 7, inclusive.

5.1 REGISTER MODE
Format:
R

The register itself (R) contains the operand to be manipulated by the
instruction.

Example:

CLR R3 ;Clears register 3.

5.2 REGISTER DEFERRED MODE
Format:
@R or (ER)

The register (R) contains the address of the operand to be manipulated
by the instruction.

Examples:

CLR @RrR1 ;All these instructions clear
CLR {R1) ;the word at the address
CLR (31) ;contained in register 1.

sy

ADDRESSING MODES

5.3 AUTOINCREMENT MODE

Format:
(ER)+

The contents of the register (ER) are incremented Iimmediately after
being used as the address of the operand (see Note below).

Examples:

CLR (RE)+ ;Each instruction clears
CLR (R4) + ;the word at the address
CLR {(R2)+ ;contained in the specified
;register and increments
;that register's contents
; by two.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never
used, do not operate the same on all
PDP-11 processors, as described below.

In the autoincrement mode, both the JMP
and JSR instructions autoincrement the
register before its use on the PDP-11/49
but not on the PDP-11/45 or 11/18.

In double operand instructions having
the addressing form Rn, (Rn)+ or
Rn,-(Rn}, where the source and
destination registers are the same, the
source operand is evaluated as the
autoincremented or autodecremented
value, but the destination register, at
the time it is used, still contains the
originally intended effective address.
In the following example, as executed on
the PDP-11/4¢, Register @ originally
contains 100(8):

MOV RO, (RO)+ ;The quantity 182 is moved
;to location 1¢8.

MOV RO, - (R@) ;The quantity 76 is moved
;to location 188.

The use of these forms should be
avoided, since they are not compatible
with the entire family of PDP~-11
processors.

An error code (Z) is printed in the
assembly 1listing with each instruction
which is not compatible among all
members of the PDP-11 family.

ADDRESSING MODES

5.4 AUTOINCREMENT DEFERRED MODE
Format:

@ (ER)+
The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as
pointer,
Example:

CLR @(R3)+ ;The contents of register 3 point

;to the address of a word to be

;cleared before the contents of the
;register are incremented by two.

5.5 AUTODECREMENT MODE
Format:
- (ER)

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note in Section 5.3).

Examples:

CLR -{R@) ;Decrement the contents of the speci-
;fied register (g, 3, or 2) by two

CLR -(R3) ibefore using its contents

CLR -{R2) ;as the address of the word to be

;cleared.

5.6 AUTODECREMENT DEFERRED MODE
Format:
@-(ER)

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Example:

CLR @-{Rr2) ;Decrement the contents of
;register 2 by two before
iusing its contents as a pointer
;to the address of the word to be
;cleared.

o

£

-

ADDRESSING MODES

5.7 INDEX MODE
Format:
E(ER)

An expression (E), plus the contents of a register (ER), yields the
effective address of the operand. 1In other words, the value E is the
offset of the instruction, and the contents of register ER form the

base. {The wvalue of the expression (E) is stored as the second or
third word of the instruction.)

Examples:

CLR X+2 (R1) ;The effective address of the word
;to be cleared is X+2, plus the
;contents of register 1.

MOV R@,~2(R3) ;The effective address of the
;destination location is -2, plus
;the contents of register 3.

5.8 INDEX DEFERRED MODE
Format:
@E (ER)

An expression (E)}, plus the contents of a register (ER), vyields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base. (The value of the expression (E) is stored as the
second or third word of the instruction.)

Example:

CLR @114 (R4) ;I1f register 4 contains 166, this
;jvalue, plus the offset 114, yields
;the pointer 214. If location 214
;contains the address 20608, location
;2040 would be cleared.

NOTE

The expression @ ({ER) may be used, but it
will be assembled as if it were written
@A (ER), and a word will be used to store
the 0.

N

ADDRESSING MODES

5.9 IMMEDIATE MODE

Format:
#E

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. The number sign (#) is an
addressing mode indicator. Appearing in the operand field this
character specifies the immediate addressing mode, indicating to
MACRO-11 that the operand itself immediately follows the instruction
word. This mode is assembled as an autoincrement of the PC.

Examples:
MOV #1008 ,R0O ;Move the value 148 into register 8.
MOV #X,RO ;iMove the value of symbol X into

;register 0.

The operation of this mode can be shown through the first example,
MOV #1006 ,Rf, which assembles as two words:

Location 28: @ 1 2 7 @8 0
Location 22: @ 9 0 1 ¢ 0
Location 24: Next instruction

The source operand (the value 100) is assembled immediately following
the instruction word. Upon execution of the instruction, the
processor fetches the first word (MOV) and increments the PC by 2 so
that it points to the second word, location 22, which contains the
source operand.

After the next fetch and increment cycle, the source operand (198} is
moved into register @, 1leaving the PC pointing to location 24 (the
next instruction).

5.180 ABSOLUTE MODE
Format:
Q#E

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word 1is taken as the
absolute address of the operand. Absolute mode is assembled as an
autoincrement deferred of the PC,

Examples:
MoV G#120,R0 ;Move the contents of absolute
;location 164 into register R@.
CLR a§x ;Clear the contents of the location

;jwhose address is specified by
;the symbol X.

w“”é
A

£,

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV @#100,R8, which assembles as two words:

Location 20: @6 1 3 7 @ @
Location 22: ¢ 0 @ 1 0 8
Location 24: Next instruction

The absolute address 18@# 1is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, which contains the absolute
address of the source operand. After the next fetch and increment
cycle, the contents of absolute address 1080 (the source operand) are
moved into register @, leaving the PC pointing to location 24 (the
next instruction).

5.11 RELATIVE MODE
Format:
E

Relative mode is the normal mode for memory references within your
program. It is assembled as index mode, using the PC as the index
register. The offset for the address calculation is assembled as the
second or third word of the instruction. This value is added to the
contents of the PC to yield the address of the source operand.

Examples:
CLR 168 ;Clear absolute location 14¢
MOV RO ,¥Y ;Move the contents of register @

;to location Y

The operation of relative mode can be shown with the statement
MOV 14¢,R3, which assembles as two words:

Location 20: @¢ 1 6 7 @8 3
Location 22: 0 0 @ @ 5 4
Location 24: NEXT INSTRUCTION

The offset, the constant 54, is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so ‘that it
points to the second word, location 22, containing the value 54.
After the next fetch and increment cycle, the processor calculates the
effective address of the source operand by taking the contents of
location 22 (the offset) and adding it to the current value of the PC,
which now points to location 24 (the next instruction). Thus, the
source operand address is the result of the calculation
OFFSET+PC = 54424 = 10¢(8), causing the contents of location 140 to be
moved into register 3.

ADDRESSING MODES

The index mode statement:
MoV 160-.-4(PC) ,R3

is equivalent to the relative mode statement:
MOV 1¢4¢,R3

108-.~-4 is the offset for the index mode statement. The current
location counter (.) holds the address of the first word of the
instruction (2#, in this case} and the PC has to move down 4 bytes to
reach location 24 (the next instruction). So, the offset could be
wWritten as 186-20-4 or 54(8).

Therefore, for the index mode, the offset (54(8)) added to the
PC(24(8)) vyields the effective address (54 + 24 = 100 (8)) of the
operand.

Thus, both statements move the contents of location 1080 into register
3.

NOTE

The addressing form @#E differs from
form E in that the second or third word
of the instruction contains the absolute
address of the operand, rather than the
relative distance between the operand
and the PC (see Section 5.14). Thus,
the instruction CLR Qf1op clears
absolute location 108, even if the
instruction is moved from the point at
which it was assembled. See the
description of the .ENABL AMA function
in Section 4.2.1, which causes all
relative mode addresses to be assembled
as absolute mode addresses.

5.12 RELATIVE DEFERRED MODE
Format:
QE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Example:

MOV @X,RO ;Relative to the current value of
;the PC, move the contents of the
ilocation whose address is pointed
;to by location X into register 4.

ADDRESSING MODES

5.13 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address.

Word offset = (E-PC)/2 truncated to eight bits,

When the offset is added to. the PC, the PC is moved to the next word
({PC=,+2}). Hence the -2 in the following calculation.

Word offset = (E-.-2)/2 truncated to eight bits.

The following conditions generate an error code (A) in the assembly
listing:

1. Branching from one program section to another

2. Branching to a location that is defined as an external
(global) symbol

3. Specifying a branch address that is out of range, meaning
that the branch offset is a value that does not lie within
the range -128(14) to +127(14).

5.14 USING TRAP INSTRUCTIONS

Since the EMT and TRAP instructions do not use the low-order byte of
the 1instruction word, information is transferred to the trap handlers
in the low-order byte. If the EMT or TRAP instruction is followed by
an expression, the value of the expression is stored in the low-order
byte of the word. Expressions greater than 377(8) are truncated to
eight bits, and an error code (T) 1is generated in the assembly
listing.

For more information on traps see the PDP-11 Processor Handbook and
the applicable system manual (see Section #.3 in the Preface).

P

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

A MACRO~-11 directive is placed in the operator field of a source line.
Only one directive 1is allowed per source line. Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive.

General assembler directives are divided into the following
categories:

1. Listing control

2. Function control

3. Data storage

4, Radix and numeric control

5. Location counter control

6. Terminator

7. Program sectioning and boundaries
8. Symbol control

9. Conditional assembly
14, File control

Each is described in its own section of this chapter (see Table 6-1

for an alphabetical 1listing of the directives and the associated
section reference).

Table 6-1
Directives in Chapter Six
Section

Directive Function Reference
JASCII Stores delimited string as a sequence 6.3.4

of the 8-bit ASCII <code of their

characters.
.ASCIZ Same as .ASCII except the string is 6.3.5

followed by a zero byte.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Directives in Chapter Six

Section

Directive Function Reference

.ASECT Similar to .PSECT. 6.7.2

.BLKB Allocates bytes of data storage. 6.5.3

«BLKW Allocates words of data storage. 6.5.3

.BYTE Stores successive bytes of data. 6.3.1

.CROSS Enables cross reference. 6.2.2

.CSECT Similar to .PSECT. 6.7.2

.DSABL Disables specified assembler 6.2.1
functions.

. ENABL Enables specified assembler functions. 6.2.1

. END Indicates end of source input. 6.6

« ENDC Indicates end of conditional assembly 6.9.1
block.

. EVEN Ensures that current value of the 6.5.1
location counter is even.

.FLT2 Generates 2 words of storage for each 6.4.2.1
floating-point number argument.

.FLT4 Generates 4 words of storage for each 6.4.2.1
floating-point number argument.

.GLOBL Defines listed symbols as global. 6.8.1

. IDENT Provides additional means of 1labeling 6.1.4
an object module.

.IF Assembles block if specified condi~ 6.9.1
tions are met.

.IFF Assembles block if condition tests 6.9.2
false.

.IFT Assembles block if condition tests 6.9.2
true.

.IFTF Assembles block regardless of whether 6.9.2
condition tests true or false.

LIIF Permits writing a one line conditional 6.9.3
assembly block.

«INCLUDE. Includes another MACRO-11 source file, 6.1¢.2

. LIBRARY Adds file to MACRO-11 1library search 6.10.1

list.

(continued on next page)

o

oy

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Directives in Chapter Six

Section
Directive Function Reference
~LIMIT Allocates two words for storage. At 6.5.4
link time puts the lowest address of
the load 1image in the first of the
saved words and the address of the
first free word following the image
in the second.
.LIST Increments listing count or 1lists 6.1.1
certain types of code,
LNLIST Decrements listing count or suppresses 6.1.1
certain types of code.
.NOCROSS Disables cross reference. 6.2.2
.0ODD Ensures that the current value of the 6.5.2
location counter is odd.
.PACKED Generates packed decimal data, two 6.3.8
digits per byte.
. PAGE Starts a new listing page. 6.1.5
.PSECT Declares names for program sections 6.7.1
and establishes their attributes,.
.RADSQ Generates data in Radix-5¢# packed 6.3.6
format.
.RADIX Changes radices throughout or in 6.4.1.1
portions of the source program.
.REM Delimits a section of comments. 6.1.6
.RESTORE Retrieves a previously .SAVEd program 6.7.4
section.
. SAVE Places the current program section on 6.7.3
top of the program section context
stack.
«SBTTL Produces a table of contents 6.1.3
immediately preceding the assembly
listing and puts subheadings on each
page in the listing.
.TITLE Assigns a name to the object module 6.1.2
and puts headings on each page of
the assembly listing.
+WEAK Defines listed symbols as WEAK. 6.8.2
.WORD Generates successive words of data in 6.3.2

the object module.

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all line printer (see Figure 6-1) and teleprinter (see Figure 6-2)
assembly listing output. On the first line of each page, MACRO-11
prints the following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see Section 6.1.2).

2. Assembler version identification.

3. Day of the week.

4. Date,

5. Time of day.

6. Page number.
The second line of each assembly listing page contains the subtitle
text specified 1in the last-encountered .SBTTL directive (see Section

6.1.3).

In the 1line printer format (Figure 6-1) binary extensions for
Statements generating more than one word are listed horizontally.

In the teleprinter format (Figure 6-2) binary extensions for
statements generating more than one word are listed vertically. There
is no explicit truncation of output to 8@ characters by the assembler.

GENERAL ASSEMBLER DIRECTIVES

butist1 ATquassy 183uriad sur Jo orduexy

FIXTFS

punoj TOQWAS OU 4T Z 338§
J83EIEAd YIOM BJ0jsaYys

JBYD JUETQ UDU £ 0F UEIS MON{

$8f JT [OQUARS JO pua 0% YSNTJé

ouU 41 urese 004

d2440q [OQWRS JO puUe e JT 35814

JBYD FUIMOTIOS 3804

133UT0d BIUSADE 4JEYD MOT BYG UT PPE 3sSnré

31 3889 pue dJeys
48Yd $a3pJo MO 335 MONE

anoqe se 41 arpueys
Jeyd 4ayjoue 39894

84D YBETY 8y} prOTY
XKapul PJom aveu s

30U 4T FIXIS

0SavYy 03 <eld

198 7 43IIm Q0uU 4T FIHIS

04 0dANAS
THe+(dS)

$C
(G¥)ZT74110
$1
Y+I0GWASE TY

+(TY) 40N
$£
oY (Sy)ZTELLD

(T84 (0Y)2ELOGY
0y
$E

¥4 (SM)CELLD

(TW) S (0N THLIOSY
oY
$£

0Y¥4(SY¥)EN4LLD
$v

AT3IQeydIe J0J JBYD IS5J4TY 3SALE JIV LD (SY)IELLD

11 JeaTI MONS

18j4ing [OQERS JO DU 48 JUTIOJ$
UeDSAL JO 858D UT JBJUIOL UBDS IABGE
1a}S1IEal YJOM aAegé

(1Y) -

(1Y)~

TH P +10dWASE
93dWAS ¢ INJYHD
(d8) 41y

‘paJagTeUN ST 487UTI04 URDS ased
I[OQuUAS OU JT 385 7 pue J4ed[D 4844nq [OQURS *[DQWAS JO

WUETQ-UOU 3Xau 32 13s JAjUT0d ULIS YITM 3AEa

*10qQuAS 0GQUN ® 440 uedg

N3N13Y
AONW
NOW th 34
dNL3S R 3
198
g181
3Ng
dHD
¥HJ1L39
aay
37d
gN0KH
¥HJIL39
aav
sy
Ilg
JM0NW
¥HJ139
AOKW
18w
374
dn0H i$1
EL:
a118
412
¥13
AOW
AOW
AOUW:E tHASL3O

..
ol
(]

i
-

STy} Ul {uaas
pua jsed 424D

WASL139

A tm e % e

.

I~-9 @2anbrg

3000000

,E€92000
9v00000

292000

209000

+Z922000
,T9V000

292000

Ov0000 ,000000

9¥00000
8000000 9000000

£02000
004910
109210

048200
594501
LPET00
LZT0E0

120090
TIvE00
005911

110990
GOEZ00
TEVE00
005911

110910
00£900
1E£H£00
005911
PEFTO0
LES9ET
#0500
Ir0500
10£C70
L9L9T0
2vI010

092000
¥52000
£82000
2vZ000
P¢2000
0vZ000
L2000
CEZ000
R2Z000
$C2000
€eTo000
212000
212000
F02000
#0Z000
202000
941000
241000
9921000
¥91000
291000
951000
$51000
2¢1000
Y¥1000
Zr1000
FE£1000
0£1000
921000

M NN WO

GENERAL ASSEMBLER DIRECTIVES

buriyst ATqueassy 193uTid 9ulT Jo ardwexd

g4opoqe ¢

ZAX4
MANLSYODd
ONWINCIH¢
943458V ¢

68¢
LPSVYETTOS

*

$

LN R LTS

LO0490045004¥004L004Z00¢1004002
00Z400C400Z¢00C“00Z¢ZL04TIL040L0
LEOCPTOCEZOVPIOEZO4ZZOTTO0Z0
LI04FTOSTOCYTIOLTOCCIO‘TIONOTO
LO049005004¥004L004C004100¢00C
00Z400C400Z400TF00T¢00T4Lb049¢0
SYOPLOCHOCHOCTHO“Ob04LED¢9E0
00C¢vE000ZT400C400Z400Z4002400C
00Z400Z¢00C“LL0“00Z400T400Z¢000
QO0CZ400Z4C0Z 00T 00T400T40084002
QOTI00T400Z00Z400Z400C50024002
00C400Z¢00Z400CF00Z400C400C4008
00Z400Z¢00Z40024002400240024002

X349

JLAge
aLage
EFDR: &
3Lage
3lig’
EFPR: &
3iAg
aLig
JLAg
JlAg
3JLrg:
alAg:
ENDN: &
LSITIN®

*P3AJ3S3J S3TQ YLD 0SAYY 30U UBYY 0 17 4T ¢8deds uayy ¢
anTeA 0SYY EUTPUOLS3II0I 335 0% anyeA [IJSY 319 £ Yjtm

€14d112

1274112

83 41

xapuy

a1q9e}y
-m.

L A L

<00
ceo
czo
cIo
<00
00z
0vo
00C
002
ooc
002
00¢
00c

{(*3uo0d) [-9 921Inb1d

100
€0
120
110
100
L¥0
LE0
00Z
0o
00c
00c
002
00c

00
0£0
020
010
602
7¥0
?2£0
00e
000
0oc
oo
002
ooz

£2¥000
Z1v000
cov000
222000
Z9£000
c5£000
CrE000
ZEL000
£CE000
Z1£000
<0E000
€LEQ00
¢?2000

6-6

GENERAL ASSEMBLER DIRECTIVES

but3ysiT Atquassy 193utidearal jJo ordwexdg -9 d2anbig

(TY) S (0M)ZHL105Y aav
oy sy
$£ 34
asoqe se 31 ITpuUeH! OMS(GYITTIELLD 470K
JBeyd Jayqoue 3994 4H3139
J8YD YSTY Aayq peoé (TH)“(0M)TdL05Y AOH
Xaput paom @yey! oy sy
OU 4T FIHIS $£ g
05(0VY O} H2H¢ 0M(SY)24141D A0 1 2 8
385 7 Y3IM j0U 4T FIXIM £ 14 [V

arjageydie 0} Jeyd S4T4 35214 JIVCL0$#4<SH)TELLT 4113

(TN - ¥13

1T 4E€3[D MONG (TY)- 473

1844ng [OQEWRS JO pua e JUTIO0G! T4V +T09WASE AOW

UEISaL 4O 258D UT J3QUTOd UEDS IAEGH 93AUAS ¢ INJYHD AOW
1315TFEad YIOM AAegd (dS)—-41Y ADWE IHASLIY

+padajIeuUn ST Ja34UI04 UBDS 352D SIY} U] fuaas

I0QUARS OU 41 34% 2 PUR JEATI 4244NQ TOYWAS *[OQUAS JO pua 3584 J2Yd
WUETQ-UOU 3X3U 32 335 JIJUTO4 USIS UJTM BAS3T *TOQuRS OGOVY € JJo uedg
WASL39

an am wm R em te

-+~

™,

+209000
110990
00£900
TZ¥£00
+292000
008917Y

1299000
110910
00£900
1£¢200

LZ9E000
005911
PEVIOO0
0v0000

000000
LEE9ET
#0500
Iv0500

9¢ 00000
104210

9000000

9000000
LRLITD
2v1010

202000
?02000
€02000

941000
TL1000

291000
¥21000
291000

251000
¥51000

Y1000
Y1000
TY1000

9£1000

0E1000
921000

£1
1

11

- MmN D

6-7

GENERAL ASSEMBLER DIRECTIVES

butyst1 Atqusssy isjutidaral jo ordwexd (°3uo)d) z-9 @2i1nbi g

X34 LSITN®

‘PBALASAS S31Q S0 (0GOVY IOU USYY O 17 ST 4@0eds usayj o B3 41
3NTEA 0SOVY BUTPUOZSEIL0D 185 0% anTes IIJSY 319 ¢ YIIM xapu]
274110 e1qey

an am am dm am

+

IR NML3Y LO0Z000 092000

9000000
punay T1O0QqeRs OW 41 7 jag¢ CHT0dKAS OO 004910 ¥52000
J@3STIEAL JIOM Bs09SaY! TY4+(dS8) ADKW i$v T09ZT0 252000
dEUD ueTq UOoU 2 0% ueds moNi ANL3S HE 38 F¥T000
$C 194 OLEE0G #2000

1892000
S8R JT 10QWRS 4O PUB 0% ysny4y¢ (SY¥)ZT9L1d g181 §9L801 0O¥2000
ouU Jr urese og¢ $1 3INg LVYETO0 9£2000

9v00000
134419 [OQHRS 4O pud je 4T qsafs F+T0GNASETY ELN L1020 ZE2000
d8UD EUINOTIOS jags YHJIL39 R T4 9CE000
133UT0L BIUBADE (uEYI MOT 34U} UT Ppe 3shrd (I8 e0y aav IE0090 22000
£ g TI¢£00 Z22000

+€92000
3T 1583 pue Ay oY¥4(SYYETALLD dNH0K 005911 912000

18YD Japuo MOT a5 MONS YH3139) cIZ000

ey
. M}

GENERAL ASSEMBLER DIRECTIVES

LIST

-NLIST

6.1.1 L.J.LIST and .NLIST Directives

Formats:

.LIST
LLIST arg
.NLIST
.NLIST arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

As indicated above, the listing control directives may be used without
arguments, in which case the 1listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a LLIST directive, the 1listing 1level count 1is
incremented; at each occurrence of an ,NLIST directive, the listing
level count 1is decremented. When the level count is negative, the
listing 1is suppressed (unless the line contains an error).
Conversely, when the level count is greater than zero, the listing is
generated regardless of the context of the line. Finally, when the
count is zero, the line is either listed or suppressed, depending on
the listing controls currently in effect for the program, The
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

+.MACRO LTEST ;List test
; A-this line should list ;Listing level count is f#.

.NLIST ;Listing level count is -1.
; B-this line should not list

.NLIST ;Listing level count is -2,
3+ C-this line should not list

.LIST ;Listing level count is -1.
: D-this line should not list

.LIST ;Listing level count is 4.
;: E-this line should list ;Listing level count is 8.
; F-this line should list ;Listing level count is @.
; G-this line should list ;Listing level count is 4.

. ENDM

.LIST ME ;List macro expansion.

LTEST ;Call the macro
; A-this line should list ;Listing level count is 4.
; E-this line should list ;Listing level count is @.
; F-this line should list ;Listing level count is 4.
s G-this line should list ;Listing level count is g.

Note that the lines following line E will 1list because the 1listing
level count remains @. If a JLIST directive 1is placed at the
beginning of a program, all macro expansions will be listed unless a
.NLIST directive is encountered.

GENERAL ASSEMBLER DIRECTIVES

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing 1level count. However, the ,LIST and .NLIST directives can be
used to override current listing control, &s shown in the example
below:

.MACRO XX
.LIST ;List next line.
X=.
.NLIST ;Do not list remainder of macro
. ;expansion.
. ENDM
.NLIST ME ;Do not list macro expansions.
XX
X=.

The symbolic arguments allowed for use with the listing directives are
described in Table 6-2. These arguments can be used singly or in
combination with each other. If multiple arguments are specified in a
listing directive, each argument must be separated by a comma, tab, or
space. For any argument not specifically included in the control
statement, the associated default assumption (List or No list) is
applicable throughout the source program. The defsult assumptions for
the listing control directives also appear in Table 6-2.

Table 6-2
Symbolic Arguments of Listing Control Directives

Argument Default Function

SEQ* List Controls the listing of the sequential
numbers assigned to the source lines.
If this number field 1is suppressed
through an .NLIST SEQ directive,
MACRO-11 generates a tab, effectively
allocating blank space for the field.
Thus, the positional relationships of
the other fields in the listing remain
undisturbed. During the assembly
process, MACRO-11 examines each source
line for ©possible error conditions.
For any line in error, the error code
is printed preceding the number field.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that 1is, if all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 {(Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function

MACRO-11 does not assign line numbers
to files that have had such numbers
assigned by other programs (an editor
program, for instance).

LOC* List Controls the listing of the current
location counter field. Normally,
this field is not suppressed.

However, 1f it is suppressed through
the .NLIST LOC directive, MACRO-11
does not generate a tab, nor does it
allocate space for the field, as is
the case with the SEQ field described
above. Thus, the suppression of the
current location c¢ounter (LOC) field

effectively left-justifies all
subsequent fields (while ©preserving
positional relationships) to the

position normally occupied by the
counter's field.

BIN* List Controls the 1listing of generated
binary code. If this field is
suppressed through an .NLIST BIN
directive, left-justification of the
source code field occurs in the same
manner described above for the LOC
field.

BEX List Controls the listing of binary
exXxtensions (the locations and binary
contents beyond those that will fit on
the source statement line). This is a
subset of the BIN argument.

SRC* List Controls the listing of source lines.

COM List Controls the 1listing of comments.
This 1is a subset of the SRC argument.
The .NLIST COM directive reduces
listing time and space when comments
are not desired,

MD List Controls the listing of macro
definitions and repeat range
expansions.

MC List Controls the listing of macro «calls
and repeat range expansions.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that is, 1if all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function

ME No list Controls the listing of macro
expansions.

MEB No list Controls the listing of macro
eXxpansion binary code. A .LIST MEB
directive 1lists only those macro
expansion statements that generate
binary code. This is a subset of the
ME argument.

CND List Controls the 1listing of unsatisfied
conditional coding and associated .IF
and .ENDC directives in the source
program. A ,NLIST CND directive lists
only satisfied conditional coding.

LD No list Controls the listing of all 1listing
directives having no arguments, in
other words, the directives that alter
the listing level count.

TOC List Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.3 describing the .SBTTL
directive). This argument does not
affect the printing of the full
assembly listing during assembly pass
2.

S¥YM List Controls the 1listing of the symbol
table resulting from the assembly of
the source program.

TTM No list Controls the 1listing output format.
The default 1is set to line printer
format. Figure 6-1 1illustrates the
line printer output format. Figure
6-2 illustrates the teleprinter output
format.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-2 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the <command string to MACRO-11 (see
Section 8.1.3 and/or the appropriate system manual). The use of these
switches overrides all corresponding listing control (.LIST or .NLIST)
directives specified in the source program.

Figure 6-3 shows a listing, produced in 1line printer format,
reflecting the wuse of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly listing
output,

GENERAL ASSEMBLER DIRECTIVES

S8AT3ID91TQ TOIFUOD BUTISTT Yy3ITA peonpoadg bHurlst1 €£-9 2InbIJ

?00000 9£0000
£00000 CTO00000C T00000 0£0000

38283 SauUI 2ad4nogy JM§ OYHLST 0£0000 1IC
0z
X34 i817°*
juawe0d 3s23 2 ST STULY (AR AN ayon: £00000 00000 100000 0Z0000
X3g 1SITN'
1527 SUOTISUBINA ALBUIQH X34 OJVHLISET 020000 61
81
NIg is171!
juawdod 4sa} 2 ST STYUL! Pégiget DE-1il 010000
NIg LSITIN'
3837 RaeUIq pajedauagd NId JWHIST 010000 LT
71
J01 1sIT!
¥00000
juamwad 3533 @ ST STULY pegeTet qyon’ £00000 200000 100000
307 LSITNY
1587 483UN0D UOTIEI0TY 307 JWHILST 000000 51
1
WINT® £1
ouy 1817 <l
juaewod 3533 2 ST STYULS pegeTet ad0M° T
o8y LSIIN* 01
9y JYHILIST OHIVKW’® &
8
-4 L
oaoem 34583 [0J4U0D EWUIGST 9
+4 N
: L4
SUOTSUEAXD OJJeW ST Il 18I ¢
<
ITIdWYXI TONLINGI ONILSIT 3TLILS 1

] 8BB4 GGI6 E£B-UB[-B80 4BPLNIES 00° S04 OUIUW I1dWYX3 TOHINOI ONILSIT

)
%,

N

M

6-13

GENERAL ASSEMBLER DIRECTIVES

S9ATIDAITQE TOIIUOD BUTISTIT Y3TM poonpoid

JUIYWOD S8 B ST STYL4

1837 SUOTISUAIND RJIBUTYS

JUaWWOD 359) 2 ST STYLS

1594 SJagENU 3JuaNBag#

EUTISI] MOJUED d[qeuds

X394W03

LA MFAR!

X34 U033

18371 AIPUTQ PIPUAIHS PUE SIULT JUIMWOT4 £X3ITW0T>
W03

pegegir

Woa

1587 Saull jUawwO]¢ W03

Jys

burist

1817
Jyon:
LSITINY
JVHLIST

1s171°*
qyonm
ASITN®
IVHLIST

1817

o

(*3uo0d) €-9 sinbrg
IN3*
x34q is17
(AR ST AR ayon:
X33 ISITIN®
X3g JYWLET
v3as 1817
beigeget ayom
D35 ISITIN®
838 JYHLSET
Wit LI
£00000 200000
£00000 200000

100000

100000

¥0000¢

£00000

200000
100000

100000

¥00000
100000

040000

040000

?70000
¥?0000
290000
090000

090000

050000
050000
?¥0000
0¥0000

0v0000

£L
4

1£
og

6C
8c
Ll

9z

IxEagd
(& o]

6-14

GENERAL ASSEMBLER DIRECTIVES

-TITLE

6.1.2 L.TITLE Directive

Format:
.TITLE string

where: string represents an identifier of 1 or more Radix~-50
characters. Appendix A.2 contains a table of Radix-50
characters.

The .TITLE directive assigns a name to the object module. The name
assigned is the first six non-blank, Radix-58 characters following the
.TITLE directive. All spaces and/or tabs up to the first
non-space/non-tab character following the .TITLE directive are ignored
by MACRO-11 when evaluating the text string. Any characters beyond
the first six are checked for ASCII legality, but they are not used as
part of the object module name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. This
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO-11. The name of
an object module (specified in the .TITLE directive) appears in the
load map produced at link time. This is also the module name which
the Librarian will recognize.

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the last .TITLE directive
encountered during assembly pass 1 establishes the name for the entire
object module.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not Radix-5¢ character, the directive is flagged with an error code
(A) in the assembly listing.

6.1.3 .SBTTL Directive 'SBTTL

Format:
.SBTTL string

where: string represents an identifier of 1 or more printable ASCII
characters.

GENERAL ASSEMBLER DIRECTIVES

The .SBTTL directive 1is used to produce a table of contents
immediately preceding the assembly listing and to print the text
following the .SBTTL directive on the second line of the header of
each page in the listing. The subheading in the text will be listed
until altered by a subsequent .SBTTL directive in the program. For
example, the directive:

.SBTTL Conditional assemblies
causes the text
Conditional assemblies

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents containing the 1line
sequence number, the page number, and the text accompanying each
.SBTTL directive is printed for the assembly listing. The listing of
the table of contents is suppressed whenever an .NLIST TOC directive
is encountered in the source program (see Table -2). An example of a
table of contents listing is shown in Figure 6-4.

MTTEMT — RT-11 MULTI-TTY EMT SE MACRO V0S5.00 Saturday 08-Jan-83 1000
TABLE OF CONTENTS

50~ i +MTOUT - Sindgle character outrut EMT

51~ 1 +MTRCTO ~ Reset CTRL/0 EMT

52~ i +MTATCH - Attach to terminal EMT

S4- 1 +MTOTCH - Detach from a terminal EMT

55— 1 WMTPRNT - Frint messase EMT

56~ 1 +MTSTAT - Return multi-terainal system status EMT
g7 1 MTTIN - Sindgle character inrut

58~ 1 MTTGET - Get & character from the ring buffer

59~ 1 TTRSET - Reset terminal status bits

60~ 1 MTTPUT - Sindle character outerut

62~ 1 MTRSET -~ Stos and detach all terminals sttached to s Job
63~ 1 ESCAFE SEQUENCE TEST SUBROUTINE

Figure 6-4 Assembly Listing Table of Contents

JADENT

6.1.4 L.IDENT Directive

Format:
.IDENT /string/

where: string represents a string of six or fewer Radix-50
characters which establish the program identification
or version number. This string is included in the
global symbol directory of the object module and is
printed in the link map and librarian listing.

-

GENERAL ASSEMBLER DIRECTIVES

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;), as long as the delimiting character is
not contained within the text string itself (see Note
in Section 6.3.4). If the delimiting characters do
not match, or if an illegal delimiting character is
used, the LIDENT directive is flagged with an error
code (A} in the assembly listing.

In addition to the name assigned to the object module with the .TITLE
directive (see Section 6.1.3), the .IDENT directive allows the user to
label the object module with the program version number.

An example of the ,IDENT directive is shown below:
.IDENT /V0l1.08/

The character string 1is converted to Radix-5f representation and
included 1in the global symbol directory of the object module. This
character string also appears in the link map produced at 1link time
and the Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,
the 1last such directive encountered establishes the character string
which forms part of the object module identification.

The RT-11 linker allows only one .IDENT string in a program. The
linker wuses the first .IDENT directive encountered during the first
pass to establish the character string that will be identified with
all of the object modules.

The RSX-11M task builder allows an .IDENT string for each module in
the program. The TASK Builder uses the first .IDENT directive in each
module to establish the character string that will be identified with
that module. Like the RT-11 Linker, the RSX-11M Task Builder uses the
.IDENT directives encountered on the first pass.

.PAGE

5.1.5 LJ.PAGE Directive/Page Eijection

Format:
. PAGE

The .PAGE directive is used within the source program to perform a
page eject at desired points in the listing. This directive takes no
arguments and causes a skip to the top of the next page when
encountered. It also causes the page number to be incremented and the
line sequence counter to be cleared. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the .PAGE directive 1is ignored
during the assembly of the macro definition. Rather, the page eject
operation is performed as the macro itself is expanded. 1In this case,
the page number is also incremented.

6-17

GENERAL ASSEMBLER DIRECTIVES

Page ejection is accomplished in three other ways:

1. After reaching a count of 58 lines in the listing, MACRO-11
automatically performs a page eject to skip over page

perforations on 1line printer paper and to formulate
teleprinter output into pages. The page number is not
changed.

2. A page eject is performed when a form-feed character is
encountered. If the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form~feed character causes the page number to be incremented
and the line sequence counter to be cleared.

3. A page eject is performed when encountering a new source
file. In this case the page number is incremented and the
line sequence count is reset,

-REM

f.1.6 L.REM Directive/Begin Remark Lines

Format:
.REM comment-character

where: comment-character represents a character that marks the
end of the comment block when the
character reoccurs.

The .REM directive allows a programmer to insert a block of comments
into a MACRO-11 source program without having to precede the comment
lines with the comment character {(;). The text between the specified
delimiting characters 1is treated as comments. The comments may span
any number of lines. For example:

.TITLE Remark example

. REM &

All the text that resides here is interpreted by MACRO-11

to be comment lines until another ampersand character is
found. Any character may be used in place of the ampersand.&
CLR PC

. END

6.2 FUNCTION DIRECTIVES

The following function directives are included in a source program to
invoke or inhibit certain MACRO-11 functions and operations incidental
to the assembly process itself.

iy

ey

GENERAL ASSEMBLER DIRECTIVES

.ENABL
.DSABL

6.2.1 .ENABL and .DSABL Directives

Formats:

.ENABL arg
.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-3.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed 1in Table 6-3 causes that directive to be flagged with an error
code (A) in the assembly listing.

Table 6~3
Symbolic Arguments of Function Control Directives

Argument Default Function

ABS Disable Enabling this function produces absclute
binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the &Absolute
Loader), use the FLX utility.

AMA Disable Enabling this function causes all relative
addresses (address mode 67) to be assembled
as absolute addresses (address mode 37).
This function is useful during the
debugging phase of program development.

CDR Disable Enabling this function causes source
columns from 73 to the end of the line, to
be treated as a comment. The most common
use of this feature is to permit sequence
numbers in card columns 73-88.

CRF Enable Disabling this function inhibits the
generation of cross-reference output. This
function only has meaning if
cross~reference output generation is

specified in the command string.

FPT Disable Enabling this function causes flocating-
point truncation; disabling this function
causes floating-point rounding.

LC Enable Disabling this function causes MACRO-11 to
convert all ASCII input to upper-case
before processing it.

{continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6~3 (Cont.)

Symbolic Arguments of Function Control Directives

Argument

Default

Function

LCM

LSB

MCL

PNC

Disable

Disable

Disable

Enable

This argument, if enabled, causes the
MACRO-11 conditional assembly directives
-IF IDN and .IF DIF to be alphabetically
case sensitive, By default, these
directives are not case sensitive.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block is normally
established by encountering a new symbolic
label, a .PSECT directive or a -.RESTORE
directive in the source program, an .ENABL
LSB directive establishes a new local
symbol block which is not terminated until
(1) another ,ENABL LSB is. encountered, or
(2) another symbolic label, .PSECT
directive or .RESTORE directive is
encountered following a paired .DSABL LSB
directive.

The basic function of this directive with
regard to L.PSECTS is 1limited to those
instances where it is desirable to leave a
program section temporarily to store data,
followed by a return to the original
program section. This temporary dismissal
of the current program section may also be
accomplished through the .SAVE and .RESTORE
directives (see Sections 6.7.3 and 6.7.4).

Attempts to define Ilocal symbols in an
alternate program section are flagged with
an error code (P) in the assembly listing.

An example of the .ENABL LSB and .DSARL LSB
directives, as typically used in a source
program, is shown in Figure 6-5,

This argument, if enabled, causes MACRO-11
to search all known macro libraries for a
macro definition that matches any undefined
symbols appearing in the opcode field of a
MACRO-11 statement. By default, this
option 1is disabled. If MACRO-11 finds an
unknown symbol in the opcode field, it
either declares a (U) undefined symbol
error, or declares the symbol an external
symbol, depending on the ,ENABL/.DSABL
option setting of GBL (described below).

Disabling this function inhibits binary
output until an L.ENABL PNC statement is
encountered within the same module.

(continued on next page)

oy,

,tf,%}
b

GENERAL ASSEMBLER DIRECTIVES

Table $-3 (Cont.)

symbolic Arguments of Function Control Directives

Argument Default Function
REG Enable When specified, the .DSABL REG directive

inhibits the normal MACRO-11 default
register definitions; 1if not disabled, the
default definitions listed below remain in
effect,

RO=%0

R1=%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7
The .ENABL REG statement may be used as the
logical complement of the .DSABL REG
directive. The use of these directives,
however, 1is not recommended. For lcgical
consistency, use the normal default
register definitions listed above.

GBL Enable This argument, if disabled, causes MACRO-11

to mark all undefined references in
assembly pass 2 with a (U) error in the
assembly 1listing. The default for this
option is enabled, which causes MACRO-11 to
treat all wundefined symbol references as
global, allowing the linker to resolve
them.

.ENABL/.DSABL MACRO V05.00 Saturday 0B-Jan-83 10:26 Pase 1

OO N O U GRS e

000000
000000 124

000033
000033 124

000001

Figure 6-5

150

+TITLE JENABL/.DSABL

+
ILLUSTRATE .ENABL/.DSABL LC

- e

+ENABL LC iSTORE MACRO IN LOWER CASBE

«MACRD TEXT $4¢
+ASCII /This $%% 3 lower case string/

+ENDM

JLIBT ME

+NLIST BEX

TEXT is $Invoke msacro in lower nase
151 +ASCII /This is 2 lower case string/

+DSABRL LC tNow disasble lower case

TEXT WAS FRE-INVOKE MACRO IN UPPER CASE
111 JASCIT /THIS WAS A LOWER CASE STRING/

+END

Example of .ENABL and .DSABL Directives

GENERAL ASSEMBLER DIRECTIVES

.CROSS

.NOCROSS

6.2.2 Cross-Reference Directives: .CROSS and .NOCROSS

Formats:
.CROSS
.CROSS syml,sym2,...symn
.NOCROSS
-NOCROSE syml,sym2,...symn
where: syml, represents legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

The .CROSS and the .NOCROSS directives control which symbols are
included 1in the cross-reference listing produced by the MACRO-11
assembler. These directives have an effect only if the /C[R] or the
/CROSS qualifier was wused in the command 1line to select the
cross-reference capability.

By default, the cross-reference listing includes the definition and
all the references to every user symbol in the module. The
cross-reference listing can be disabled for all symbols or for a
specified list of symbols.

When the .NOCROSS directive is used without a symbol 1list, the
cross-reference 1listing of all the symbols in the module is disabled.
The cross-reference listing of all the symbols in the module is
reenabled when the .CROSS directive is used without a symbol list.
Any symbol definition or reference that appears after a .NOCROSS
directive that 1is used without a symbol list and before the next
.CROSS directive that is used without a symbol list, is excluded from
the cross-reference listing.

The .NOCROSS directive, used with a symbol 1list, disables the
cross—-reference listing for the 1listed symbols. When the .CROSS
directive is used with a symbol list, the cross-reference listing of
the listed symbols is reenabled.

In the following example, the definition of LABEL1l and the reference
to LOC1l and LOC2 are not included in the cross-reference listing.

Example:

.NOCROSS ;Stop cross reference
LABEL1: MOV LOC1l,L0OC2 ;Copy data

.CROSS ;iReenable cross reference

In the next example, the definition of LABEL2 and the reference to
LOC2 are included in the cross reference, but the reference to LOCl1 is
not included.

Example:
.NOCROSS LOC1 ;Do not cross reference LOC1
LABEL2: MOV LOCl,Lo0C2 ;Copy data
.CROSS Loc1 ;Reenable cross reference
;of LOCIL.

6-22

£

GENERAL ASSEMBLER DIRECTIVES

The .CROSS directive, used without a symbol list, cannot be used to
reenable the cross-reference 1listing of a symbol specified in the
symbol 1list of a .NOCROSS directive, in addition, if the
cross-reference listing of @all the symbols in a module is disabled,
the .CROSS directive used with a symbol list will have no effect until
the cross-reference listing is reenabled by the .CROSS directive used
without a symbol list.

The .CROSS directive, with no symbol list, is equivalent to the .ENABL
CRF directive, and the .NOCROSS directive, with no symbol list, is
equivalent to the .DSABL CRF directive.

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
directives, ASCII conversion characters, and radix-control operators
described in the following sections.

£.3.1 .BYTE Directive -BYTE

Format:

.BYTE exp ;Stores the binary value of the
;expression in the next byte.

.BYTE expl,exp2,expn ;Stores the binary values of the list
. ;of expressions in successive bytes.

where: exp, represent expressions that must be reduced to 8 bits
expl, of data or 1less. Each expression will be read as a
. 16-bit word expression, the high-order byte to be
. truncated. The high-order byte must be either all
. zeros or a truncation (T) error results.
expn Multiple expressions must be separated by commas.

The .BYTE directive is used to generate successive bytes of binary
data in the object module.

Example:

SAM=5
.=410
.BYTE “D48,SAM ;The value 068 (octal equivalent of 48
;decimal) is stored in location 416.
;The value @#pP5 is stored in location
;411.

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special unary operators is described in Section
6.4.1.2.

- GENERAL ASSEMBLER DIRECTIVES

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the task builder
or linker issues a truncation (T) error for the object module in

question. For example, the following statements create such a
possibility:

.BYTE 23 ;Stores octal 23 in next byte.
A:

.BYTE A ;Relocatable value A will probably

icause truncation error.

If an expression following the .BYTE directive is null, it is
interpreted as a zero:

=420
.BYTE vy iZeros are stored in bytes 42¢, 421,
7422, and 423.

Note that in the above example, four bytes of storage result from the
.BYTE directive, The three commas in the operand field represent an
implicit declaration of four null velues, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(#), are reserved in the object module.

-WORD

6.3.2 .WORD Directive

Formats:

.WORD exp ;Stores the binary equivalent of the
;expression in the next word.

-WORD expl,exp2,expn ;Stores the binary equivalents of the
ilist of expressions in successive

;words.
where: exp, represent expressions that must reduce to 16 bits of
expl, data or less, Multiple expressions must be separated
. by commas.
expn

The .WORD directive is used to generate successive words of data in
the object module.

Example:

SAL=0
.=500
.WORD 177535,.+4,8SAL ;Stores the values 177535, 586, and
;0 in words 5¢#, 502, and 504,
;respectively,

-~y

GENERAL ASSEMBLER DIRECTIVES

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
.WORD 5, ;Stores the values #, 5, and 8 in
:location 506, 582, and 544,
;respectively.

A statement with a blank operator field (one that contains a symbol
other than a macro call, an instruction mnemonic, a MACRO-11
directive, or a semicolon) is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

=440
LABEL: 100,LARBEL ;Stores the value 140 in location 440
;and the value 44¢ in location 442.

NOTE

You should not wuse this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACRO-11 expression. Used in
MACRO-11 expressions, these characters cause a 16-bit expression value
to be generated.

When the single gquote is used, MACRO-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The high-order byte of the resulting expression
value 1is always zero (0). The 16-~bit wvalue 1is then used as an
absolute term within the expression. For example, the statement:

MOV #'A,RE

moves the following 16-bit expression value into register §:

00000000§0100000C1

LBinary Value of ASCII A

Thus the expression 'A results in a value of 181(8).

The single quote (') character must not be followed by
carriage-return, null, RUBOUT, line~feed, or form-feed character;
it is, an error code (A) is generated in the assembly listing.

[
rh @

GENERAL ASSEMBLER DIRECTIVES

When the double quote is used, MACRO-11 takes the next two characters
in the expression and converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB,Ra

moves the following 16-bit expression value into register 0:

01000010§01000001

tw-sinary Value of ASCII A

Binary Value of ASCII B

Thus the expression "AR results in a value of £41141(8).

The double quote (") character, like the single quote (') character,
must not be followed by a carriage-return, null, RUBOUT, line-feed, or
form-feed character; if it is, an error code {A) is generated in the
assembly listing.

The ASCII character set is listed in Appendix A.1l.

-ASCII

6.3.4 L.ASCII Directive

Format:
-ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. The
vertical~tab, null, line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, cause an error code (I} if used in an
.ASCII string, The <carriage-return and form-feed
characters are flagged with an error code (A} because
these characters end the scan of the line, preventing
MACRO-11 from detecting the matching delimiter at the
end of the character string.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note at end of section), as long as
the delimiting character is not contained within the
text string itself. 1If the delimiting characters do
not match, or if an illegal delimiting character is
used, the L(ASCII directive is flagged with an error
code (A) in the assembly listing.

6-26

GENERAL ASSEMBLER DIRECTIVES

The .ASCII directive translates character strings into their 7-bit
ASCII equivalents and stores them in the object module. A
non-printing character can be expressed only by enclosing its
equivalent octal wvalue within angle brackets. Each set of angle
brackets so used represents a single character. For example, in ‘the
following statement:

LASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Each bracketed expression must reduce to
eight bits of absolute data or less.

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABCKexpression>DEF/

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ ;Stores the binary representation
;of the letters HELLO in five
;consecutive bytes.

.ASCII /ABC/<15><12>/DEF/ ;Stores the binary representation
;of the characters A,B,C,carriage
;return,line feed,D,E,F in eight
;consecutive bytes.

LASCII /A<K15>B/ ;Stores the binary representation
;of the characters A, <, 1, 5, >,
;and B in six consecutive bytes.

NOTE

The semicolon (;)} and equal sign (=) can
be wused as delimiting characters in the
string, but care must be exercised in so
doing because of their significance as a
comment indicator and assignment
operator, respectively, as illustrated
in the examples below:

LASCII ;ABC;/DEF/ ;Stores the binary
;representation of
;the characters
;A, B, C, b, E, and
;F in six
;consecutive bytes;
;not recommended
;practice,

6.3.5

Format:

.ASCIZ

where:

GENERAL ASSEMBLER DIRECTIVES

.ASCII /ABC/;DEF; ;Stores the binary
;representations of
;the characters A,
;B, and C in three
;jconsecutive bytes;
i the characters D,
;E, F, and ; are
;treated as a
;comment.,

.ASCII /ABC/=DEF= ;jStores the binary
;representation of
;the characters A,
;B, ¢, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

An equal sign is treated as an
assignment operator when it appears as
the first character in the ASCII string,
as illustrated by the following example:

.ASCII =DEF= ;The direct
;assignment
;operation
; JASCII=DEF 1is
;performed, and a
;syntax error (Q)
;1s generated upon
;encountering the
;second = sign.

+ASCIZ Directive

string

/string 1/.../string n/

is a string of printable ASCII characters.
vertical-tab, null, 1line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
if used in an
form-feed
characters are flagged with an error code (A) because
they end the scan of the 1line, preventing MACRO-11

and form-feed, cause an error code (I)
.ASCIZ string. The carriage-return

from detecting the matching delimiter.

.ASCIZ

The

P

GENERAL ASSEMBLER DIRECTIVES

/ / represent delimiting characters. These delimiters may
be any paired oprinting characters, other than the
equal sign (=), the left angle bracket (<}, or the
semicolon (;) (see Note in Section 6.3.4), as long as
the delimiting character is not contained within the
text string itself. If the delimiting characters do
not match or if an illegal delimiting character 1is
used, the .ASCIZ directive is flagged with an error
code (A) in the assembly listing.

The .ASCIZ directive is similar to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15
LF=12
HELLO: .ASCIZ <CR><LF>/MACRO-11 V85.08/<CR><LF> ;Introductory message
. EVEN
MOV $HELLO,R1 ;Get address of message.
MOV $#LINBUF ,R2 ;Get address of output buffer.
19S$: MOVB (R1)+,(R2)+ ;Move a byte to output buffer.
BNE 198 :If not null, move another byte.

.RADS0

$£.3.6 .RADS@ Directive

Format:
.RAD5¢ /string 1/.../string n/

where: string represents a series of characters to be packed. The
string must consist of the characters A through Z, ¢
through 9, dollar sign ($), period (.) and space ().
An illegal printing character causes an error flag (Q)
to be printed in the assembly listing.

If fewer than three characters are to be packed, the
string is packed left-justified within the word, and
trailing spaces are assumed.

GENERAL ASSEMBLER DIRECTIVES

As with the .ASCII directive (described in Section
6.3.4), the vertical-tab, null, line~feed, RUBOUT, and
all other non-printing characters, except
carriage-return and form-feed, cause an error code (1)
if used in a .RADS8 string. The carriage-return and
form-feed characters result in an error code (A)
because these characters end the scan of the line,

preventing MACRO-11 from detecting the matching
delimiter.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), provided
that the delimiting character is not contained within
the text string itself, If the delimiting characters
do not match or if an illegal delimiting character is
used, the .RAD5# directive is flagged with an error
code (A) in the assembly listing.

The .RADS5¢ directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. Examples of .RADS@ directives are
shown below:

.RADS@# /ABC/ ;Packs ABC into one word.
.RADS® /AB/ ;Packs AB (SPACE) into one word.
.RAD58 /ABCD/ ;Packs ABC into first word and
;D (SPACE) (SPACE) into second word.
.RAD5¢ /ABCDEF/ ;Packs ABC into first word, DEF into
;second word.
Each character 1is translated 1into its Radix-50 equivalent, as
indicated in the following table:
Character Radix-50 Octal Equivalent
(space))
A-Z 1-32
$ 33
. 34
(undefined) 35
g-9 36-47

The Radix-50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

Radix-50 Value = ((Cl*50)+C2)*50+C3
For example:
Radix-50 Value of ABC = ((1*58)+2)*5@8+3 = 3223(8)

Refer to Appendix A.2 for a table of Radix-50 eguivalents.

e

ey

B,

GENERAL ASSEMBLER DIRECTIVES

Angle brackets (<>) must be used in the .RADS5# directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

.RADS@ /AB/<35> ;Stores 3255 in one word.

CHR1=1
CHR2=2
CHR3=3

.RAD5@ <CHR1><CHR2><CHR3> ;Equivalent to .RAD5@ /ABC/.

6.3.7 Temporary Radix-5@ Control Operator
Format:
"Rcce

where: ccc represents a maximum of three characters to be
converted to a 16-bit Radix-538 value. If more than
three characters are specified, any following the
third character are ignored. If fewer than three are
specified, it is assumed that the trailing characters
are blanks,

The "R operator specifies that an argument is to be converted to
Radix-50 format. This allows up to three characters to be stored in
one word. The following example shows how the "R operator might be
used to pack a 3-character file type specifier (MAC) into a single
16-bit word.

MOV #"RMAC,FILEXT ;Store RADSY MAC as file extension

The number sign (#) is used to indicate immediate data (data to be
assembled directly into object code). "R specifies that the
characters MAC are to be converted to Radix-56. This wvalue is then
stored in location FILEXT.

.PACKED

$.3.8 L.PACKED Directive

Format:
.PACKED decimal-string(,symbol]

where: decimal-string represents a decimal number from @ to
: 31(19) digits long. Each digit must be in
the range # to 9. The number may have a
sign, but it is not required and is not

counted as a digit.

symbol is assigned a value -equivalent to the
number of decimal digits in the string.

GENERAL ASSEMBLER DIRECTIVES

The .PACKED directive generates packed decimal data, 2 digits

per
byte. Arithmetic and operational properties of packed decimals are
similar to those of numeric strings. Below 1is an example of the
.PACKED directive.

.PACKED -12,PACK ; PACK gets value of 2

. PACKED +500 ;500 is packed

.PACKED # ;19 is packed

.PACKED ~#,SUM ;SUM gets value of 1

.PACKED 1234E6 ;Illegal packed decimal number

;E6 will be treated as a variable
;and given a value of 4

6.4 RADIX AND NUMERIC CONTROL FACILITIES
6.4.1 Radix Control and Unary Control Operators

Any numeric or expression value in a MACRO-11 source program 1is read
as an octal wvalue by default. Occasionally, however, an alternate
radix would be useful. By using the MACRO-11 facilities described

below, a programmer may declare a radix to affect a term or an entire
program depending on his needs.

NOTE

When two or more unary operators appear
together, modifying the same term, the
operators are applied to the term from
right to left.

6.4.1.1 L.RADIX Directive RAD'X
Format:

+RADIX n
where: n represents one of the three radices: 2, 8 and 10.

Any value other than null or one of the three
acceptable radices will cause an error code (A) in the
assembly listing., If the argument n is not specified,
the octal default radix is assumed. The argument (n)
is always read as a decimal value.

Numbers used in a MACRO~-1l source program are initially considered to
be octal wvalues; however, with the .RADIX directive you can declare
alternate radices applicable throughout the source program or within
specific portions of the program.

"

GENERAL ASSEMBLER DIRECTIVES

Any alternate radix declared in the source program through the LRADIX
directive remains in effect until altered by the occurrence of another
such directive, for example:

.RADIX 146 :;Begins a section of code having a
;decimal radix.

.RADIX ;Reverts to octal radix.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or
source program, it is recommended that the wuser specify numeric or
expression values using the temporary radix control operators
described below.

6.4.1.2 Temporary Radix Control Operators

Formats:

“DYnumber®™ {"number" is evaluated as a decimal number)
“0"number® ("number" is evaluated as an octal number)
"B"number" {"number" is evaluated as a binary number)

These three unary operators allow the user to establish an alternate
radix for a single term. An alternate is useful because after you
have specified a radix for a section of code or have decided to use
the default octal radix, you may discover a number of cases where an
alternate radix is more convenient or desirable (particularly within
macro definitions). Creating a mask word (used to check bit status),
for example, might best be accomplished through the use of a binary
radix.

Thus an alternate radix can be declared temporarily to meet a
localized requirement in the source program. The temporary radix
control operator may be used any time regardless of the radix in
effect or other radix declarations within the program. Because the
operator affects only the term immediately following it, it may be
used anywhere a numeric value 1is legal. The term (or expression)
associated with the temporary radix control operator will be evaluated
during assembly as a 16-bit entity.

The expressions below are representative of the methods of specifying
temporary radix control operators:

“p123 Decimal Radix
"0 47 Octal Radix
"B #8081141 Binary Radix
“0<A+13> Octal Radix

The up-arrow and the radix control operator may not be separated, but
the radix control operator and the following term or expression can be
separated by spaces or tabs for legibility or formatting purposes. A
multi-element term or expression that 1is to be interpreted in an
alternate radix should be enclosed within angle brackets, as shown in
the last of the four temporary radix control expressions above.

GENERAL ASSEMBLER DIRECTIVES

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix.
When using the temporary radix control operator only numeric values
are affected. Any symbols used with the operator will be evaluated
with respect to the radix in effect at their declaration.

.RADIX 19

A=10
.WORD "O<KA+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it yields the following equivalent statement:

.WORD 188

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

100. Equivalent to 144(8)
1376. Equivalent to 2540 (8)
128. Equivalent to 28¢(8)

The above expression forms are equivalent in function to:

“Dlag
“D137A
"D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the wuse of the floating-point hardware on the PDP-11.
These facilities allow floating-point data to be created 1in the
program, and numeric values to be complemented or treated as
floating~point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may contain an
optional decimal point and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. 8Such a string will result in
one or more errors (A and/or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

[PV

3.
3.0E0
3E®
.3E1
309E-2

As can be inferred, the list could be extended indefinitely (3080E-3,
.@3E2, and so on}. A leading plus sign is optional (3.8 is considered
to be +3.f). A leading minus sign complements the sign bit. No other
operators are allowed {(for example, 3.8+4N is illegal).

£

GENERAL ASSEMBLER DIRECTIVES

All floating-point numbers are evaluated as 64 bits in the following
format:

63 62 55 54 0]
S EEEEEEEE MMM.MMM

Mantissa (55 bits)
Exponent (8 bits)
Sign (1 bit)

MACRO-11 returns a value of the appropriate size and precision via one
of the floating-point directives. The values returned may be
truncated or rounded (see Section 6.2.1).

Floating-point numbers are normally rounded,. That 1is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express its exact value, the highest bit (32) of the
unretained field is added to the least significant bit (#) of the
retained field (see illustration below). The ,ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT 1is wused to
return to floating-point rounding (see Table 4-3).

Bit Bit Bit Bit
32 9 32 9
W o
Retained Unretained
field field

All numeric operands associated with Floating Point Processor
instructions are automatically evaluated as single-word, decimal,
floating~-point values unless a temporary radix control operator is
specified. For example, to add (floating) the octal constant 41840 to
the contents of floating accumulator zero, the following instruction
must be used:

ADDF #7041049,F0
where: F@ is assumed to represent floating accumulator zero.

Floating-point numbers are described in greater detail in the
applicable PDP-11 Processor Handbook.

.FLT2

6.4.2.1 Floating-Point Storage Directives .FLT4

Formats:

LFLT2 argl,arg2,...
.FLT4 argl,arg2,...

GENERAL ASSEMBLER DIRECTIVES

where: argl,arg2,... represent one or more floating-point
numbers as described in Section 6.4.2.
Multiple arguments must be separated by
commas.

.FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage for each argument. As in
the .WORD directive, the arguments are evaluated and the results are
stored in the object module.

6.4.2.2 Temporary Numeric Control Operators: “"C and °"F - The “C
unary operator allows you to specify an argument that is to be
complemented as it is evaluated during assembly. The “F unary
operator allows vyou to specify an ergument that is a 1-word
floating-point number.

As with the radix control operators described above, the numeric
control operator ("C) can be used anywhere in the source program that
an expression value is legal. Such a construction 1is evaluated by
MACRO-11 as a 16-bit binary wvalue before being complemented. For
example, the feollowing statement:

TAG4: .WORD “C151

causes the 1's complement of the value 151 (octal) to be stored as a
16-bit wvalue 1in the program. The resulting value expressed in octal
form is 177626(8).

Because the "C construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

“C"D25

causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed in octal form, reduces to
177746 (octal).

The term created through the use of the temporary numeric control
operator can be used alone or in combination with other expression
elements. For example, the following construction:

“C2+6
is equivalent in function to:

<"C2>+6
This expression is evaluated during assembly as a 1's complement of 2,
plus the absolute value of 6. When these terms are combined, the

resulting expression value generates a carry beyond the most
significant bit, leaving 2008@83(8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

6-36

P

£ %,
B
§

GENERAL ASSEMBLER DIRECTIVES

“F, as stated above, is a unary operator for numeric control which
allows you to specify an argument that is a l-word floeting-point
number., For example, the following statement:

Az MOV $"F3.7,R8

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 a
S EEEEEEEE MMMMMMM
Sign (1 bit) Exponent (8 bits) Mantissa (7 bits}

The importance of ordering with respect to unary operators is shown
below.

“Fl.0 = (40200
“F-1.¢ = l4p20¢0
-"Fl.8 = 137600
~"F-1.8 = 037680

The value created by the "F unary operator and its argument is, like
“Cc and its argument, a term that can be used by itself or in an
expression. For example:

“C"F6.2
is equivalent to:

“C<"F6.2>

Again, the use of angle brackets is advised. Expressions used as
terms or arguments of a unary operator must be explicitly grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in the following sections.

Several MACRO-11 statements (listed below) may cause an odd number of
bytes to be allocated: ;

1. .BYTE directive

2. .BLKB directive

3. L.ASCII or .ASCIZ directive
4, .0ODD directive

5. .PACKED directive

6. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

GENERAL ASSEMBLER DIRECTIVES

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 L.EVEN Directive 'EVEN

Format:
.EVEN

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. 1If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:
.ASCIZ /This is a test/

. EVEN ;Ensures that the next statement will
;ibegin on a word boundary.

.WORD X¥YZ
6.5.2 .0DD Directive -()[)[)
Format:
.0DD

The .0ODD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current
location counter is already odd, no action 1is taken. Any operands
following an .0ODD directive are also flagged with an error code {(Q) in
the assembly listing.

.BLKB

6.5.3 L.BLKB and .BLKW Directives 'BLKW

Formats:

.BLKB exp
+«BLKW exp

w’»}

GENERAL ASSEMBLER DIRECTIVES

where: exp represents the specified number of bytes or words to be
reserved in the object program. Any expression that is
defined at assembly time and that reduces to an
absolute wvalue 1is legal. 1If the expression specified
in either of these directives is not an absolute value,
the statement is flagged with an error code (A) in the
assembly 1listing. Furthermore, if the expression
contains a forward reference (a2 reference to a symbol
that is not previously defined), MACRO-11 generates
incorrect object file code and may cause statements
following the .BLKB/.BLKW directive to be flagged with
phase (P) errors. These directives should not be used
without arguments. However, if no argument is present,
a default value of 1 is assumed.

The .BLKB directive reserves byte blocks in the object module; the
.BLKW directive reserves word blocks. Figure 6-6 illustrates the use
of the .BLKB and .BLKW directives.

; :*Illustrate use of LBLKB and .BLKW directives
i 000000 - +PSECT IMPURE,D,GBL,RW

: 000000 COUNT! .BLKW 1 iCharacter counter

; 000002 MESSAG? JEBLKB 80, iMessade text buffer

lg 000122 CHRSAV? BLKB $Saved character

i; 000123 FLAG!? +BLKB iFlag bute

:3 000124 MSGPTR: .BLKW iMessase buffer rointer

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The J.BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

6.5.4 .LIMIT Directive LIMIT

Format:

.LIMIT
To know the upper and lower address boundaries of the image is often
desirable. when the .LIMIT directive is specified in the source
program, MACRO-11 generates the following instruction:

«BLKW 2
causing two sStorage words to be reserved in the object module. Later,

at 1link time, the lowest address in the load image (the initial value

6-39

GENERAL ASSEMBLER DIRECTIVES

of SP) is inserted into the first reserved word, and the address of
the first free word following the image is inserted into the second
reserved word.

During linking, the size of the image is rounded upward to the nearest
2-word boundary.

.END

6.6 TERMINATING DIRECTIVE: .END DIRECTIVE

Format:
+END {exp]

where: exp represents an optional expression value which, |if
present, indicates the program-entry point, which is
the transfer address where the program begins.

When MACRO-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any text beyond this point in
the current source file, or in additional source files identified in
the command line, will be ignored.

When creating an image consisting of several object modules, only one
object module may be terminated with an .END exp statement (where exp
is the starting address). all other object modules must be terminated
with an LEND statement (where .END has no argument); otherwise, an
error message will be issued at link time. If no starting address is
specified 1in any of the object modules, image execution will begin at
location 1 of the image and immediately fault because of an odd
addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (0) in the assembly listing. The LEND statement may be
used, however, in an immediate conditional statement (see Section
6.9.3).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.7 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names
for program sections (p-sections) and to establish certain program
section attributes essential to linking.

. ﬁg,;,gl‘)
sl ’

6.7.1 LPSECT Directive

Format:
.PSECT

where: name

arqgl,
arg2,
argn

GENERAL ASSEMBLER DIRECTIVES

.PSECT

name,argl,arg2,...argn

. e

represents the symbolic name of the program
section, as described in Table 6-4.

represents any legal separator (comma, tab and/or
space) .

represent one or more of the legal symbolic
arguments defined for use with the .PSECT
directive, as described in Table 6-4. The slash
separating each pair of symbolic arguments listed
in the table indicates that one or the other, but
not both, may be specified. Multiple arguments
must be separated by a legal separating character.
Any symbeolic argument specified in the ,PSECT
directive other than those 1listed 1in Table 6-4
will cause that statement to be flagged with an
error code {A) in the assembly listing.

Table 6-4

Symbolic Arguments of .PSBECT Directive

Argument

Default Meaning

NAME

RO/RW

Blank

RW

Establishes the program section name, which is
specified as one to six Radix-58 characters.
1f this argument is omitted, a comma must
appear in place of the name parameter. The
Radix-5¢ character set is listed in Appendix
A.2.

Defines which type of access is permitted to
the program section:

RO=Read-0Only Access
RW=Read/Write Access
NOTE

RSX~-11M and RT-11 use only Read/Write
access.

{continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)

Symbolic Arguments of ,PSECT Directive

Argument

Default

Meaning

I/D

GBL/LCL

LCL

Defines the contents of the program section:

I=Instructions. If a p-section has the I
attribute and the program is overlaid, all
calls to the p-section are referenced
through a body of overlay code stored in the

root.,

If a concatenated p-section has the I
attribute, code 1is concatenated on even

bytes.

D=Data. 1If a p-section has the D attribute,
all calls to the p-section are referenced

directly.

If a concatenated p-section has the D
attribute, code is concatenated on the next
byte regardless of whether the byte is odd

or even,

Defines the scope of the program section, as

it will be interpreted at link time:

NOTE

The GBL/LCL arguments apply only in the
case of overlays; in building
single-segment nonoverlaid pPrograms, the
GBL/LCL arguments have no meaning,
because the total memory allocation for
the program will go into the root
segment of the image.

LCL=Local. If an object module contains a
local program section, then the storage
allocation for that module will remain in
the segment containing the module. Many
modules can contribute (allocate memory) to
this Same program section; the memory
allocation for each contributing module is
either concatenated or overlaid within the
segment, depending on the allocation
argument of the program section (see CON/OVR

below) .

(continued on next page)

A

T
5,

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)
gsymbolic Arguments of .PSECT Directive

Argument Default Meaning

GBL=Global. If a global program section Iis
used in more than one segment of a program,
all references to the p-section are
collected across segment boundaries. The
program sections are then stored in the
segment {of those originally containing the
p-sections) that is nearest the root.

NOTE

RT-11 stores the collected p-sections in
the root.

ABS/REL REL Defines the relocatability attribute of the
program section:

ABS=Absoclute {non~relocatable). The ABS
argument causes the linker or task builder
to treat the p-section as an absolute
module; therefore, no relocation is
required, The program section is assembled
and loaded, starting at absolute virtual
address #.

The location of data in absolute program
sections must fall within the virtual memory
limits of the segment containing the program
section; otherwise, an error results at
link time. For example, the following code,
although valid during assembly, may generate
an error message (A) if wvirtual location
1090600 is outside the segment's virtual
address space:

(I .PSECT ALPHA,ABS
L=. 41006000
WORD X
REL=Relocatable. The REL argument causes the
linker or task builder to treat the
p-section as 'a relocatable module and a
relocation bias 1is added to all location
references within the program section making
the references absolute,
(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6~4 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of the
program section:

CON=Concatenated. All references to one
program section are concatenated to
determine the total memory space needed for
the p-section.

OVR=Overlaid. All references to one program
section are overlaid; the total memory
space needed equaling the largest,
individual p-section.

SAV/NOSAV NOSAV Determines where the linker allocates storage
for the program section:

SAV=Save. The linker 1is forced to always
allocate the program section to the root of
the image.

NOSAV=No Save. The 1linker allocates the
program section normally.

The only argument in the .PSECT directive that is position-dependent
is NAME, If it is omitted, a comma must be used in its place. For
example, the directive:

.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default values (see Table 6-4) are assumed for all other
unspecified arguments.

The .PSECT directive may be used without a name or arguments (see
Section 6,7.1.1).

The .PSECT directive allows a user to create program sections (see
Section 6.7.1.1) and to share code and data among the sections he has
created (see Section 6.7.1.2). In declaring the program sections
(also called p-sections), you may declare the attributes of the
p-sections. This allows you to control memory allocation and at the
same time increases program modularity. (For a discussion of memory
allocation, refer to the applicable system manual - see Section #.3 in
the Preface.}

MACRO-11 provides for 256 (18#) program sections, as listed below:
1. One default absolute program section (. ABS.)

2. One default relocatable program section (. BLK.)*

* In RT-11 this program section is unnamed.

6-44

T

i

GENERAL ASSEMBLER DIRECTIVES

3. Two-hundred-fifty-four named program sections.

For each program section specified or implied, MACRO-11 maintains the
following information: '

1. Program section name
2. Contents of the current location counter
3. Maximum location counter value encountered

4. Program section attributes (described in Table 6-4 above).

6.7.1.1 Creating Program Sections - The first statement of a source
program is always an implied .PSECT directive; this causes MACRO-11
to begin assembling source statements at relocatable zero of the
unnamed program section.

The first occurrence of a .PSECT directive with a given name assumes
that the current location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Subsequent .PSECT directives
cause assembly to resume where the named section previously ended.
For example:

.PSECT ;Declares unnamed relocatable program
A: .WORD @ ;section assembled at relocatable
B: WORD g ;addresses @ through 5, i
C: .WORD 14}

.PSECT ALPHA ;Declares relocatable program section
X3 .WORD] ;named ALPHA assembled at relocatable
Y: .WORD 4] ;addresses @ through 3.

.PSECT ;Returns to unnamed relocatable
D: .WORD 7] ;program section and continues assem-—

;bly at relocatable address 6.

A given program section may be defined completely upomn encountering
its first .PSECT directive. Thereafter, the sectien can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,COVR
and later referenced through the equivalent directive:

.PSECT ALPHA
which requires no arguments. 1If arguments are specified, they must be
identical to the ones previously declared for the p-section. If the

arguments differ, the arguments of the first .PSECT will remain in
effect, and an error code (A) will be generated as a warning.

GENERAL ASSEMBLER DIRECTIVES

By maintaining separate location counters for each program section,
MACRO-11 allows you to write statements that are not physically
sequential but that can be loaded sequentially following assembly, as
shown in the following example.

-PSECT SEC1,REL,RO ;Start a relocatable pProgram section

Az .WORD ¢ inamed SECl assembled at relocatable
B: .WORD @ ;addresses @ through 5.
C: .WORD ¢
ST: CLR A ;Assemble code at relocatable
CLR B raddresses 6 through 21(8).
CLR C
.PSECT SECA,ABS iStart an absolute program section
;named SECA. Assemble code at
WORD .+2,A ;absolute addresses @ through 3.
.PSECT SEC1 ;Resume relocatable program section
INC A ;SECl. Assemble code at relocatable
BR ST ;jaddresses 22 through 27(8).

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is relocatable or absolute when referenced in a
relocatable or absolute program section, respectively,

Any labels appearing on a line containing a .PSECT (or .ASECT or
-CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: +PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed
program section,

Since it is not known during assembly where relocatable program
sections will be loaded, all references to relocatable program
sections are assembled as references relative to the base of the
referenced section.

In the follcwiné example, references to the symbols X and Y are
translated into ‘references relative to the base of the relocatable
program section named SEN,.

.PSECT ENT,ABS

.=.4+1000
A CLR X ;Assembled as CLR base of
;jrelocatable section + 12(8).
JMP Y ;Assembled as JMP base of
;jrelocatable section + 6(8).
.PSECT SEN,REL
MOV RA,R1
JMP A ;Assembled as JMP 1060,
Y: HALT
X: WORD @

s

"‘{FJ»E
P

P

GENERAL ASSEMBLER DIRECTIVES

NOTE

In the preceding example, using a
constant in conjunction with the current
location counter symbol (.) in the form
.=1009 would result in an error, because
constants are always absolute and are
always associated with the program's
.ASECT (. ABS.). If the form .=1008
were used, a program section
incompatibility would be detected. See
Section 3.6 for a dicussion of the
current location counter.

Thus, MACRO-11 provides the linker or task builder with the necessary
information to resolve the linkages between various program sections.
Such information 1is not necessary, however, when referencing an
absolute program section, because all instructions in an absolute
program section are associated with an absolute wvirtual address.

6.7.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, that is, program sections of the same name with the arguments
GBL and OVR from different assemblies are all loaded at the same
locatieon at link time. All other program sections (those with the
argument CON) are concatenated.

A single symbol could name both an internal symbol and a program
section. Considering FORTRAN again, using the same symbolic name is
necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.7.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. You can,
therefore, place odd length data at the end of a module. However,
when several modules contain object code contributions to the same
program section having the concatenate attribute (see Table 6-4;
CON/OVR), odd length modules (except the last) may cause succeeding
modules to be linked starting at odd locations, thereby making the
linked program unexecutable. To avoid this problem, separate code and
data from each other and place them 'in separately named program
sections (see Table 6-4; I/D}. The linker or task builder can then
begin each program section on an even address. Refer to the
applicable system manual for further information on memory allocation
of tasks (see Section #.3 in the Preface).

GENERAL ASSEMBLER DIRECTIVES

.ASECT
6.7.2 JASECT and .CSECT Directives .CSECT
Formats:
LASECT
CSECT

.CSECT symbol
where: sypbol represents one or more of the arguments in Table 6-4.

IAS and RSX-11M assembly-language programs use the .PSECT and .ASECT
directives exclusively, because the .PSECT directive provides all the
capabilities of the .(CSECT directive defined for other PDP-11
assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,
but assembles them as though they were .PSECT directives with the
default attributes listed in Table 6-5, Compatibility exists between
other MACRO-11 programs and the IAS/RSX-11M Task Builders, because the
Task Builders also treat the .ASECT and .CSECT directives like .PSECT
directives with the default values listed in Table 6-5,

Table 6-5
Program Section Default Values

Default Value

Attribute

LASECT .CSECT (named) .CSECT (unnamed)
Name . ABS. name . BLK.*
ACCESS RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

* In RT~11 this program section has no default name.

Note that the statement:
.CSECT JIM
is identical to the statement:

.PSECT JIM,GBL,0OVR

because the .CSECT default values GBL and OVR are assumed for the

named program section.

PN

GENERAL ASSEMBLER DIRECTIVES

.SAVE

6.7.3 .SAVE Directive

Format:
.SAVE

.SAVE stores the current program section context on the top to the
program section context stack, while leaving the current program
section context in effect. If the stack is full when .SAVE is issued,
an error (A) occurs. The stack can handle 16 .SAVEs. The program
section context includes the values of the current 1location c¢ounter
and the maximum value assigned to the location counter in the current
program section.

See Figure 6-7 for an example of .SAVE.

6.7.4 L.RESTORE Directive / 'RESTGRE

Format:

+RESTORE

The .RESTORE directive retrieves the program section from the top of
the program section context stack. If the stack 1is empty when
.RESTORE is issued, an error (A) occurs. When .RESTORE retrieves a
program section, it restores the current location counter to the value
it had when the program section was saved.

See Figure 6-7 for an example of .RESTORE.

GENERAL ASSEMBLER DIRECTIVES

SSATIOSITU FIOLSAY® pue FAVS® Jo ordwexy -9 2anbr g

arqe} 40 pua ag¢

BUIISTT 07 40TJdd B[ge] [OQURS UO 3405 [[3YS WJ0d3y

81qe} JO S534ppe pud 0% 3364

S81AQ ¢B[Qe} JO IZIGH

UBDS FBUTJNP JBJUI0d [OQUAS JuUdJILNTS
B[Qe] [OQWAS JO SSBJDPE asegs

1IX@ 4pAULRIS ST BIQeLs

ssasppe pua aAegi

arge} ay} 1sed JuTO44

ayge} 04 JAUT04 ITITEIFTULY
. J1gqey J0 aseq 854

Sav4jud pIIeA 40y B3[qe} ysey ayj} ueag

aN3*

ttr BpOd [euQrIpRY

TH4HOLWAS

$4EUTIIN0OL 4O 458Y

dOLRAS TY
TH¢ZISHAS
HASHNJ 1Y
THISVENAS

19384 3Ua44nd ayj} Jajuasays

adeds Ay} aprse 3354 3z18

13384 BaN4RY BUG UT #3380 Ay} 840354 199404 ININT
13384 1uadand ayy aaegy

JZIS43HYN sq

apesn JYOLSIY'/INVE* 40 afdmex]

AOW :140SS

A e em em

14088

+
d01WAS sa
ZISHAS §4a
HASYHND sq
SYERAS 54

ejep [eson

- am em

-+

NMAL3Y

am oA am

NOW
aaw
NOW
NOW IASNVIS

ASNYDIS
+

R T

HAN3*
3401S3y°

LE RN 3NN

13384°

3nvs:

[s). 210 g

-4

8524038 34NdaT [2I0] aUTSag ¢

84 oJoey ¢
+¢

71148

/900000

900000
¥00000
1200000
000000

) 39¥SN 3¥01S3¥°/3AVS*
T 9Fed TG180 £B-uer-LT REPUON 00°SON DHIVW

100000

104910

£L0E000

L9T010
104990
{91010
104910

220000

€20000
20000
£20000
220000

020000

¥10000
010000
¥00000
000000

,.,,
S

“OMMETNON D>

40 34N9X3

NIUW

6-50

2

oy

P T

GENERAL ASSEMBLER DIRECTIVES

6.8 SYMBOL CONTROL DIRECTIVES

The symbol control directives are used to set the type of a given
symbol,

.GLOBL

$.8.1 L.GLOBRL Directive

Format:

.GLOBL syml,sym2,...symn

where: syml, represent legal symbolic names. When multiple
SYMZ, ... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

The .GLOBL directive is provided to define (and thus provide linkage
to) symbols . not otherwise defined as global symbols within a module.
In defining global symbols the directive ,GLOBL A,B,C is similar to:

A==:expression A==expression A::
==sexpression or B==expression or B::
C==:expression C==expression Ci::

Because object modules are linked by global symbols, these symbols are
vital to a program. The following paragraph, describing the
processing of a program from assembly to 1linking, explains the
global's role.

In assembling a source program, MACRO-11 produces a relocatable object
module and a listing file containing the assembly listing and symbol
table. The linker or task builder joins separately assembled object
modules into a single executable image. During 1linking, object
modules are relocated relative to the base of the module and linked by
global symbols. Because these symbols will be referenced by other
program modules, they must be singled out as global symbols in the
defining modules. As shown above, the .GLOBL directive, global
assignment operator, or global label operator will define a symbol as
global. ,

All internal symbols appearing within a given program must be defined
at the end of assembly pass 1 or they will be assumed to be default
global references. Refer to Section 6.2.1 for a description of
enabling/disabling of global references.

GENERAL ASSEMBLER DIRECTIVES

In the following example, A and B are entry-point symbols. The symbol
A has been explicitly defined as a global symbol by means of the
.GLOBL directive, and the symbol B has been explicitly defined as a
global label by means of the double colon (::). Since the symbol C is
not defined as a label within the current assembly, it is an external
(global) reference if .ENABL GBL is in effect.

Define a subroutine with 2 entry points which calls an
external subroutine

LU TR TR 1

.PSECT ;Declare the unnamed program section.
.GLOBL & ;Define A as a global symbol.
A: Mov @(R5)+,Ra ;Define entry point A,
MOV #X,R1
X: JSR PC,C ;Call external subroutine C.
RTS R5 :Exit,
B:: MOV {R5)+,R1 ;Define entry point B.
CLR R2
BR X

External symbols can appear in the operand field of an instruction or
MACRO-11 directive as a direct reference, as shown in the examples
below:

CLR EXT
.WORD EXT
CLR @EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR EXT+A
.WORD EXT-2
CLR @EXT+A (R1)

An undefined external symbol cannot be used in the evaluation of a
direct assignment statement or as an argument in a conditional
assembly directive (see Sections 3.3, 6.9.1 and 6,9.3).

WEAK

6.8.2 .WEAK Directive

Format:

.WEAK syml,sym2,...symn

where: syml represents legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).
Example:
.WEAK SUB1,SUB2

The .WEAK directive may also embody a label field and/or a comment
field.

m‘%}
i

/;3\@\}
g

GENERAL ASSEMBLER DIRECTIVES

The .WEAK directive is used to specify symbols that are either defined
externally in another module or defined globally in the current
module. This directive suppresses object 1library searches for
specified external symbols.

When the .WEAK directive specifies a symbol that 1is externally
defined, it 1is considered a global symbol. If the linker £finds the
symbol's definition in another module, it uses that definition. If
the linker does not find an external definition, the symbol is given a
value of @. The linker does not search a 1library for the global
symbol, but 1if a module brought in from a library for another reason
contains the symbol's definiticn, the linker uses that definition.

If a symbol that is defined in the current module is specified by the
.WEAK directive, the symbol is considered globally defined. However,
if the current module is inserted in an object library, the symbol is
not inserted in the library's symbol table. Consequently, the module
is not found when the library is searched at link time to resolve the
symbol.

NOTE

The .WEAK directive is only supported by
the RT-11 V5.6 LIBRARIAN (LIBR) and
LINKER (LINK). Support 1s not yet
implemented in the RS8X-11l taskbuilder
{TKB) or librarian (LBR).

6.9 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of
stated condition tests within the body of the program.

AF
.ENDC

6.9.1 Conditional Assembly Block Directives

Format:
.IF cond,argument(s) ;Start conditional assembly block.
range :Range of conditional assembly block.
. ENDC ;End of conditional assembly block.

where: cond

arg

ran

. EN

G

ument (s)

ge

DC

ENERAL ASSEMBLER DIRECTIVES

represents a specified condition that must be
met if the block is to be 1included in the
assembly. The conditions that may be tested by
the conditional assembly directives are defined
in Table &-6.

represents any legal separator (comma, space,
and/or tab).

represent(s) the symbolic argument{s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
condition to be tested (see Table 6-6).

represents the body of code that 1is either
included in the assembly, or excluded, depending
upon whether the condition is met.

terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed in Table 6-6, an illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-6

Legal Condition Tests for Conditional Assembly Directives

Conditions
Positive Complement Arguments Assemble Block If:

EQ NE Expression Expression is equal to @
(or not equal to 9).

GT LE Expression Expression is greater
than @ (or less than or
equal to @g).

LT GE Expression Expression is less than ¢
(or greater than or equal
to #).

DF NDF Symbolic Symbol is defined (or not

argument defined).

B NB Macro-type Argument is blank (eor

argument non-blank) .

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-6 (Cont.}

Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive Complement Arguments Assemble Block If:

IDN DIF Two macro-type Arguments are

arguments (or different).

IDN/.IF DIF
directives
alphabetically
sensitive by

sensitive by

. ENABL option

LCM).

using

identical
The LIF
conditional
are

be case
the
(.ENABL

not
case
default.
The user may enable these
directives to

NOTE

A macro-type argument (which is a form
of symbolic argument), as shown below,
is enclosed within angle brackets or
denoted with an up-arrow construction
(as described in Section 7.3).

<A,B,C>
“/124/
An example of a conditional assembly directive follows:

.IF EQ ALPHA+1 ;:Assemble block i1f ALPHA+1=0

.

. ENDC

The two operators & and ! have special meaning within DF

and NDF

conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator
! Logical inclusive OR operator
For example, the conditional assembly statement:

.IF DF S¥YM1l & SYM2

. ENDC

results in the assembly of the conditional block if the
and SYM2 are both defined.

symbols

SYM1

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

. ENDC
. ENDC

For example, the following conditional directives:

.IF DF SyMl
.IF DF SYM2

. ENDC
. ENDC

can govern whether assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive, An L.ENDC directive encountered outside a conditional,
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO-11 permits a nesting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (0) in the assembly listing.

AFF
AFT
AFTF

6.9.2 Subconditional Assembly Block Directives

Formats:

.IFF
+IFT
. IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block. ,

3. The unconditional assembly of a body of code within a
conditional assembly block.

GENERAL ASSEMBLER DIRECTIVES

The subconditional directives are described in detail in Table 6-7.
If a subconditional directive appears outside a conditional assembly
block, an error code (0) is generated in the assembly listing.

Table 6-7
Subconditional Assembly Block Directives

Subconditional
Directive Function

.IFF If the condition tested upon entering the
conditional assembly block 1is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or to
the end of the conditional assembly block, is to be
included in the program.

LIFT If the condition tested upon entering the
conditional assembly block is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or to
the end of the conditional assembly block, is to be
included in the program.

LIFTF The code following this directive, and continuing up
to the next occurrence of a subconditional directive
or to the end of the conditional assembly block, is
to be included 1in the program, regardless of the
result of the condition tested wupon entering the
conditional assembly block.

The implied argument of a subconditional directive 1is the condition
test specified upon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples
below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition
in the block 1is not satisfied. Examples 3 and 4 below illustrate
nested directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF DF SYM :Tests TRUE, SYM is defined. Assemble
. ;the following code.

.IFF ;Tests FALSE. SYM is defined. Do not
. ;assemble the following code.

LIFT ;Tests TRUE. SYM is defined. Assem-

. ;ble the following code.

.IFTF ;Assemble following code uncondition-
. ;ally.

H-57

LIFT
. ENDC
EXAMPLE 2: Assume
defined.
.IF DF X
.IF DF ¥
.IFF
JIFT
. ENDC
. ENDC
EXAMPLE 3: Assume
: defined.
.IF DF &
MOV A,AR]
LIFF
MOV R1,RO
.IF NDF B
. ENDC
. ENDC
EXAMPLE 4: Assume
defined.
.IF DF X
.IF DF Y

GENERAL ASSEMBLER DIRECTIVES

that

that

that

;Tests TRUE. SYM is defined. Assem-
;ble remainder of conditional assem-
;bly block.

symbol X is defined and that symbol Y is not

;Tests TRUE, symbol X is defined.
;Tests FALSE, symbol Y is not defined.
iTests TRUE, symbol Y is not defined,
;assemble the following code.

;Tests FALSE, symbol ¥ is not defined.
;Do not assemble the following code.

symbol A is defined and that symbol B is not

;Tests TRUE. A is defined.
iAssemble the following code.

;Tests FALSE. A is defined. Do not
;assemble the following code.

;Nested conditional directive is not
;evaluated.

symbol X is not defined and that symbol Y is

;Tests FALSE. Symbol X is not defined.
;Do not assemble the following code.
;Nested conditional directive is not
;evaluated.

;Nested subconditional directive is
;hot evaluated.

;Nested subconditional directive is
;hot evaluated.

i

GENERAL ASSEMBLER DIRECTIVES

AIF

6.9.3 Immediate Conditional Assembly Directive

Format:
LIIF cond,arg,statement

where: cond represents one of the legal condition tests defined
for conditional assembly blocks in Table 6-6.

P represents any legal separator (comma, space,
and/or tab).

arg represents the argument associated with the
immediate conditional directive; an expression,
symbolic argument, or macro-type argument, as
described in Table 6-6,

’ represents the separator between the conditional
argument and the statement field. If the preceding
argument is an expression, then a comma must be
used; otherwise, a comma, space and/or tab may be
used.

statement represents the specified statement to be assembled
if the condition is satisfied.

An immediate conditional assembly directive provides a means for
writing a 1-line conditional assembly block. The wuse of this
directive requires no terminating .ENDC statement and the condition to
be tested 1is completely expressed within the line containing the
directive.
For example, the immediate conditional statement:

.IIF DF FOO,BEQ ALPHA
generates the code

BEQ ALPHA
if the symbol FOO is defined within the source program.
As with the .IF directive, a condition test other than those listed in

Table 6-6, an 1illegal argument, or a null argument specified in an
.IIF directive results in an error code {A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

6.10 FILE CONTROL DIRECTIVES

The MACRO-11 file control directives are used to add file names to
macro library 1lists and to insert a source file into the source file
being currently used.

.LIBRARY

6.1¢.1 LJLIBRARY Directive

Format:
.LIBRARY string

where: string represents a delimited string that 1is the file
specification of a macro library.

The .LIBRARY directive adds s file name to a macro library 1list that
is searched. A library 1list 1is searched whenever a .MCALL or an
undefined opcode 1is encountered within a MACRO-11 program. The
libraries that make up the list are searched in the reverse order in
which they were specified to the MACRO-11 assembler.

If any information was omitted from the macro 1library argument,
default values are assumed. The default file specification for
MACRO-11/RT-11 is DK:.MLB, and for other systems it is SY:.MLB.

The .LIBRARY directive is used as follows:

.LIBRARY /DBl: [SMITHIUSERLIB/
. LIBRARY ?DK:SYSDEF.MLB?
. LIBRARY \CURRENT ,MLB\

MACRO-11 searches all macro libraries if it finds an unknown symbol in
the opcode field and the auto-mcall option has been previously enabled
by .ENABL MCL.

NOTE

If you are using MACRO-11 with an RT-11
operating system, you should be aware of
the following two restrictions. The
device driver for the specified device
that the .LIBRARY file resides on must
already be loaded, either explicitly
with the KMON LOAD command, or
implicitly by reference to the device on
the original MACRO-11 command line. The
second restriction 1is that there is a
limit on the number of .LIBRARY files
that may be specified. The limit is
twelve minus the number of files
specified 1in the MACRO-11 command line.
Since there can be a maximum of eight
files on a2 MACRO-11/RT-11 command line,
there are at least four available slots
for .LIBRARY files.

5 V%%
{

ey

g

GENERAL ASSEMBLER DIRECTIVES

6.17.2 L.INCLUDE Directive .INCLUDE

Format:

.INCLUDE string

where: string represents a delimited string that 1is the file
specification of a macro source file.

The .INCLUDE directive is used to insert a source file within the
source file currently being used. When this directive is encountered,
the current source file is stacked and the source file specified by
the directive 1is read into memory. When the end of the specified
source file is reached, the original source file is popped from the
stack and assembly resumes at the line following the directive. A
source file can also be inserted within a source file that has already
been specified by the .INCLUDE directive. 1In this case the original
source file and the first source file specified by the .INCLUDE
directive are stacked and the second specified source file is read
into memory. When the end of the second source file is reached, the
first specified source file is popped from the stack and assembly
resumes at the line following the directive, and when the end of the
first specified source file is reached, the original source file is
popped from the stack and assembly of that file is started again at
the line following the .INCLUDE directive. The maximum nesting level
of source files specified by the .INCLUDE directive is five.

If any information is omitted from the source file argument, default
values are assumed. The default file specification for MACRO-11/RT-11
is DK:.MAC, and for other systems it is 8SY:.MAC.

The .INCLUDE directive is used as follows:

.INCLUDE /DR3:[1,2]MACROS/ ;File MACROS.MAC
. INCLUDE ?DK:SYSDEF?
. INCLUDE \CURRENT .MAC\

NOTE

If you are using MACRO-11 with an RT-11
operating system, the device driver for
the specified device that the ,INCLUDE
file resides on must already be loaded,
either explicitly with the KMON LOAD
command, or implicitly by reference to
the device on the original MACRO-11
command line.

s
4

“ny,

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

By using macros a programmer <can use a single 1line to insert a
sequence of lines into a source program,

A macro definition is headed by a .MACRO directive (see Section 7.1.1)
followed by the source lines. The source lines may optionally contain
dummy arguments. If such arguments are used, each one is 1listed 1in
the .MACRO directive.

A macro call (see Section 7.3) is the statement used by the programmer
to call the macro into the source program. It consists of the macro
name followed by the real arguments needed to replace any dummy
arguments used in the macro.

Macro expansicn is the insertion of the macro source 1lines into the
main program. Included 1in this insertion is the replacement of the
dummy arguments by the real arguments.

Macro directives provide the means to manipulate the macro expansions.
Only one directive 1is allowed per source line. Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive, The macros and their associated
directives are detailed in this chapter.

.MACRO

7.1.1 .MACRO Directive

Format:
[label:] .MACRO name, dummy argument list
where: label represents an optional statement label.
name represents the user-assigned symbolic name of the

macro. This name may be any legal symbol and may
be used as a label elsewhere in the program.

R represents any legal separator (comma, $pace,
and/or tab).

where:

dummy
argument
list

MACRO DIRECTIVES

represents a number of legal symbols (see Section
3.2.2) that may appear anywhere in the body of the

macro definition, even as a 1label. These dummy
symbols can be used elsewhere in the program with
no conflict of definition. Multiple dummy

arguments specified in this directive may be
separated by any legal separator. The detection
of a duplicate or an illegal symbol in a dummy
argument list terminates the scan and causes an
error code {(A) to be generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

.MACRO ABS A,B ;Defines macro ABS with two arguments.

The first statement of a macro definition must be a .MACRO directive.

NOTE

Although it is 1legal for a label to
appear on a .MACRO directive, this
practice is discouraged, especially in

the

case of nested macro definitions,

because invalig labels or labels
constructed with the concatenation
character will cause the macro directive

to

be ignored. This may result in

improper termination of the macro
definition,

This NOTE also applies to .IRP, .IRPC,

and .REPT.
7.1..2 .ENDM Directive ENDM
Format:
. ENDM [name]
where: name represents an optional argument specifying the
name of the macro being terminated by the
directive.
Example:
. ENDM ;Terminates the current

. ENDM ABS

;macro definition,

;Terminates the current
;macro definition named ABS.

MACRO DIRECTIVES

I1f specified, the macro name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly listing.
In either case, the current macro definition 1is terminated.
Specifying the macro name in the .ENDM statement thus permits MACRO-11
to detect missing .ENDM statements or improperly nested macro
definitions.

The .ENDM directive must not have a label, If a legal 1label is
attached, it will be ignored. 1If an illegal label is attached, the
directive will be ignored.

The .ENDM directive may be followed by a comment field, as shown
below:

.MACRO TYPMSG MESSGE ;Type a message.

JSR R5, TYPMSG

.WORD MESSGE

. ENDM ;End of TYPMSG macro.

The final statement of every macro definition must be an .ENDM
directive. The L.ENDM directive is also used to terminate indefinite
repeat blocks (see Section 7.6) and may be used to terminate repeat
blocks (see Section 7.7).

7.1.3 .MEXIT Directive MEXIT

Format:
.MEXIT

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
nested macros, The .MEXIT directive terminates the current macro as
though an .ENDM directive had been encountered. Using the .MEXIT
directive bypasses the complexities of nested conditional directives
and alternate assembly paths, as shown in the following example:

.MACRO ALTR N,A,B

.IF EQ N iStart conditicnal assembly block.
LMEXIT ;Terminate macro expansion.

. ENDC :End conditional assembly block.

. ENDM ;Normal end of macro.

In an assembly where the dummy symbol N is replaced by zero (see Table
6-6), the .MEXIT directive would assemble the conditional bleock and
terminate the macro expansion. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

7-3

MACRO DIRECTIVES

A .MEXIT directive encountered outside a macro definition is flagged
with an error code (0) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is used in a macro definition, it

is ignored during the assembly of the macro definition, but a page
eject is performed when that macro is expanded.

7.2 CALLING MACROS

Format:
[label:} name real arguments
where: label represents an optional statement label.

name represents the name of the macro, as specified in
the .MACRO directive (see Section 7.1.1).

real represent symbolic arguments which replace the
arguments dummy arguments listed in the .MACRO directive.
When multiple arguments occur, they are separated
by any legal separator. Arguments to the macro
call are treated as character strings, their usage

is determined by the macro definition.

A macro definition must be established by means of the .MACRO
directive (see Section 7.1.1) before the macro can be called and
expanded within the source program.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macroc call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO) ,R1 ;ABS is defined as a label.
BR ABS ;ABS is considered to be a label.
ABS #4 ,ENT,LAR :ABS is a macro call.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Multiple arguments within a macro definition or macro <c¢all must be
separated by one of the 1legal separating characters described in
Section 3.1.1.

.

MACRO DIRECTIVES

Macro definition arguments (dummy) and macro <call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence {see Section 7.3.5).

For example, the following macro definition and its associatedé macro
call contain multiple arguments:

.MACRC REN A,B,C

REN ALPHA ,BETA,<C1,C2>

Arguments which themselves contain separating characters must be
enclosed in paired angle brackets. For example, the macro call:

REN <MOV X,¥Y>,#44 ,WEV
causes the entire expression
MOV X, Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

The up-arrow (") construction allows angle brackets to be passed as
part of the argument. This construction, for example, could have been
used in the above macro call, as follows:

REN “/<MOV X,Y>/,#44 ,WEV

causing the entire character string <MOV X,Y¥> to be passed as an
argument.

Because of the use of the up-arrow (") shown above, care must be taken
when passing an argument beginning with a unary operator ("0, "D, "B,
"R, "F ...). These arguments must be enclosed in angle brackets (as
shown below) or MACRO-11 will read the <character following the
up-arrow as a delimiter.

REN <0 411>,X,Y
The following macro call:

REN #44 ,WEV"/MOV X,Y/
contains only two arguments (#44 and WEV"/MOV X,Y/), because the
up-arrow is a unary operator (see Section 3.1.3) and it is not

preceded by an argument separator.

As shown in the examples above, spaces can be wused within bracketed
argument constructions to increase the legibility of such expressions.

——

MACRO DIRECTIVES

7.3.1 Macro Nesting ' e,

Macro nesting occurs where the expansion of one macro includes a call
to another. The depth of nesting allowed depends upon the amount of
dynamic memory used by the source program being assembled.

To pass an argument containing legal arqument delimiters to nested
macros, enclose the argument in the macro definition within angle
brackets, as shown in the coding sequence below. This extra set of
angle brackets for each 1level of nesting is required in the macro
definition, not in the macro call.

«MACRO LEVEL1 DUM1,DUM2
LEVELZ <DUM1>
LEVELZ <DUM2>

. ENDM
.MACRO LEVEL2 DUM3

DUM3

ADD 410,40 .
MOV RO, (R1)+ ‘
. ENDM

A call to the LEVEL1l macro, as shown below, for example:
LEVEL1 <MOV: X,R@>,<MOV R2,R@>

causes the following macro expansion to occur:

MoV X,R@

ADD #10,R0
MOV RA, (R1)+
Mov R2,R@
ADD #10,R@
MoV R@, (R1)+

When macro definitions are nested, the inner definition cannot Dbe
called wuntil the outer macro has been called and expanded. For
example, in the following coding:

.MACRO LV1 A,B

- o—

-

+MACRO LV2 C

-

. ENDM
. ENDM

the LV2 macro cannot be called and expanded until the LVl macro has
been expanded. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
expanded.

",

MACRO DIRECTIVES

7.3.2 Special Characters in Macro Arguments

If an argument does not contain spaces, tabs, semicolons, or commas it
may include special characters without enclosing them in a bracketed
construction. For example:

.MACRO PUSH ARG
MOV ARG, - (SP)
. ENDM

-

PUSH X+3(%2)
causes the following code to be generated:

MOV X+3(%2) ,-(SP)

7.3.3 Passing Numeric Arguments as Symbols

If the unary operator backslash (\) precedes an argument, the macro
treats that argument as a numeric value in the current program radix.
The ASCII characters representing this value are inserted in the macro
expansion, and their function 1is defined 1in the context of the
resulting code, as shown in the following example:

.MACRO INC A,B

CON A,\B ;B is treated as a number in current
B=B+1 ;program radix.
. ENDM
.MACRO CON A,B
A'B: .WORD 4 ;A'B is described in Section 7.3.7.
. ENDM
C=0 INC X,C

The above macro call (INC) would thus expand to:
X0 .WORD 4

In this expanded code, the label X@: results from the concatenation
of two real arguments. The single quote (') character in the label
A'B: concatenates the real arguments X and # as they are passed
during the expansion of the macro. This type of argument construction
is described in more detail in Section 7.3.7.

A subsequent call to the same macro would generate the following code:
X1: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (that is, C)
cannot be updated in the CON macro definition, because the character 0
has replaced C in the argument string (INC X, C). 1In the CON macro
definition, the number passed is treated as a string argument. (Where
the value of the real argument is @, only a single # character is
passed to the macro expansion.)

MACRO DIRECTIVES

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call {IDT) has been equated elsewhere in
the source program to the value 6.

-MACRO IDT SYM :Assume that the symbol ID takes
.IDENT /V@1l.'SYM/ ;on a unique 2-digit value.
. ENDM iWhere V@1 is the update
. ;version of the program.
IDT \ID

The above macro call would then expand to:
«.IDENT /V0i1.6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

A macro can be defined with or without arguments. If more arguments
appear in the macro call than in the macro definition, an error code
(Q) is generated in the assembly listing. If fewer arguments appear
in the macro call than in the macro definition, missing arquments are
assumed to be null values. The conditional directives .IF B and JIF
NB (see Table 6-6) can be used within the macro to detect missing
arguments. The number of arguments can also be determined using the
-NARG directive (Section 7.4.1).

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, a label must be explicitly
specified as an argument with each macro call. The user must be
careful in issuing subsequent calls to the same macro in order to
avoid duplicating labels. This concern can be eliminated through a
feature of MACRO-11 that creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO-11 can automatically create local
symbols of the form n$, where n is a decimal integer within the range
30080 through 65535, inclusive. Such local symbols are created by
MACRO-11 in numerical order, as shown below:

300008
30001%

655348
655358

MACRO DIRECTIVES

This automatic generation is invoked on each call of a macro whose
definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ;Contains dummy argument B preceded by
;jquestion mark.
TST A
BEQ B
ADD #5,A
B:
. ENDM

A local symbol is created automatically by MACRO-11 only when a real
argument of the macro call is either null or missing, as shown in
Example 1 below. If the real argument is specified in the macro call,
however, MACRO-11 inhibits the generation of a local symbol and normal
argument replacement occurs, as shown in Example 2 below. (Examples 1
and 2 are both expansions of the Alpha macro defined above.)

EXAMPLE 1: Create a Local Symbol for the Missing Argument:

ALPHA R1 ;Second argument is missing.
TST R1

BEQ 300008% ;Local symbol is created.
ADD #5,R1

302008 :

EXAMPLE 2: Do Not Create a Local Symbol:

ALPHA R2,XYZ ;Second argument XYZ is specified.
TST R2

BEQ XYZ ;Normal argument replacement occurs.
ADD #5,R2

XYZ:

Automatically created local symbols are restricted to the first 16(10)
arguments of a macro definition.

Automatically created local symbols resulting from the expansion of a
macro, as described above, do not establish a local symbol block in
their own right.

When a macro has several arguments earmarked for automatic local
symbol generation, substituting a specific label for one such argument
risks assembly errors because MACRO-11 constructs its argument
substitution 1list at the point of macro invocation. Therefore, the
appearance of a label, the .ENABL LSB directive, or the .PSECT
directive, in the macro expansion will create a new local symbol
block. The new local symbol block could leave local symbol references
in the previous block and their symbol definitions in the new one,
causing error codes in the assembly listing. Furthermore, a later
macro expansion that creates local symbols in the new block may
duplicate one of the symbols in question, causing an additional error
code (P) in the assembly listing.

MACRO DIRECTIVES

7.3.6 Keyword Arguments
Format:
name=string
where: name represents the dummy argument,
string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless delimited as described in Section 7.3.

Macros may be defined with, and/or called with, keyword arguments.
When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call. When a keyword argument appears in the real argument list
of a macro call, however, the specified string becomes the real
argument for the dummy argument that matches the specified name,
whether or not the dummy argument was defined with a keyword. If a
match fails, the entire argument specification is treated as the next
positional real argument.

A keyword argument may be specified anywhere in the dummy argument
list of &a macro definition and is part of the positional ordering of
argument. A keyword argument may also be specified anywhere in the
real argument list of a macro call but, in this case, does not affect
the positional ordering of the arguments.

1 .LIST ME
2 ;
3 ; Define a macro having keywords in dummy argument
4 ; list
5 ;
6 ~.MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 «WORD CONTRL
8 «WORD BLOCK
9 - WORD ADDRES
10 . ENDM
11
12
13 H
14 ; Now invoke several times
15 ;
16
17 @goapee TEST A,B,C
aneage @gernoc .WORD A
goQgeg2 AeEg0R0G .WORD B
0agen4 BEABBOG +WORD C
18
19 poagge TEST ADDRES=2¢ ,BLOCK=3¢,CONTRL=40
Pooage aagp4ap .WORD 40
p00010 0a8930 .WORD 30
200912 000829 .WORD 20
20
21 ¢goo@14 TEST BLOCK=5
00014 @ooRo] .WORD 1
200016 008095 -WORD 5
00020 0220280G «WORD TEMP

oy

P

MACRO DIRECTIVES

22
23 00022 TEST CONTRL=5,ADDRES=VARIAB
ggge22 000805 .WORD 5
000g24 000060 .WORD
gopg26 0OCBABG .WORD VARIAB
24
25 0p0pa30e TEST
g0@a30 00asal .WORD 1
pogB32 0AGEAD .WORD
aag34 00A300G .WORD TEMP
26
27 80@@36 TEST ADDRES=JACK!JILL
gAagg36 apepgal .WORD 1
gnpeisn 0RgGe0 .WORD
900042 0000@80C .WORD JACK!JILL
28
29
30 apagnl . END

7.3.7 Concatenation of Macroc Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character 1in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition |is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C,

A'B: .ASCIZ /C/
.BYTE ''*A,''B
. ENDM

when the macro DEF is called through the statement:
DEF X,Y,<MACRO-11>
it is expanded, as follows:

XY: .ASCIZ /MACRO-11/
.BYTE X,'Y

In expanding the first 1line, the scan for the first argument
terminates upon finding the first apostrophe (') character. Since A
is a dummy argument, the apostrophe (') is removed. The scan then
resumes with B; B is also noted as another dummy argument. The two
real arguments X and Y are then concatenated to form the label XY:.
The third dummy argument is noted in the operand field of the .ASCIZ
directive, causing the real argument MACRO-11 to be substituted in
this field.

7-11

MACRO

When evaluating the arguments of
of the second 1line, the
character. Since it is neither
argument, this apostrophe

argument and 1is therefore
terminated upon encountering the
neither preceded nor followed by
the macro expansion. The fourth
another dummy argument and is
(') characters were necessary in
apostrophe (') characters in the

7.4 MACRO ATTRIBUTE DIRECTIVES:

remains in the macro expansion.
then encounters the second apostrophe,
discarded.

DIRECTIVES

the .BYTE directive during expansion

scan begins with the first apostrophe (')

preceded nor followed by a dummy
The scan
which is followed by a dummy
The scan of argument A is
comma (,). The third apostrophe is
a dummy argument and again remains in
(and last) apostrophe is followed by
likewise discarded. (Four apostrophe
the macro definition to generate two

macro expansion,)

«NARG, .NCHR, AND .NTYPE

MACRO-11 has three directives that allow the user to determine certain

attributes of macro arguments:

.NARG, .NCHR, and .NTYPE. The use of

these directives permits selective modifications of a macro expansion,

depending on the nature of
directives are described below.

the

arguments being passed. These

.NARG

7.4.1 .NARG Directive
Format:
[label:} +NARG symbol
where: label represents an optional statement label.
symbol represents any legal symbol. This symbol is

equated to the number of non-keyword arguments in
the macro call currently being expanded. If a
symbol is not specified, the .NARG directive is
flagged with an error code (A) in the assembly
listing.

The .NARG directive is used to determine the number of non-keyword

arguments in the macro call currently being expanded. Hence, the

-NARG directive can appear only within a macro definition; if it

appears elsewhere, an error code (0) is generated in the assembly

listing.

An example of the .NARG directive is shown in Figure 7-1.

SO0 N O DN e G R e

21
22

23
24

Figure 7-1

000000

000000

000000
000002
000004
000006
000010
000012

7.4.2 JNCHR Directive

Format:
[label:]
where: label

symbol

MACRO DIRECTIVES

000000

000001

000006

0600240
000240
000240
000240
000240
000240

000001

(23

5 Examele of the NARG directive

’..

+HACRO

+ENDM

+TITLE NARG

+ENABL
+LIST

NULL
+NARG
JIF EQ
+MEXIT
IFF
+REPT
NOP
»ENDM
+ENDC

NULL
+NARG
+IF EQ
SMEXIT
+ IFF
+REPT
NOF
«ENDM
JENDC

NULL
+NARG
+IF E@
»MEXIT
« IFF
+REPT
NOP
+ENDM
NOP
NOP
NOF
NOP
NOFP
NOP
+ENDC

+END

.NCHR symbol,<string>

represents an optional statement label.

represents

equated

to

any
the

the

error code {(A)

represents

any

and/or tab).

legal

number
specified character string.
specified,

.LC

HME

NUM
SYM
SYM

NUM

SYM
SYM

SYM
SYM

é

Example of .NARG Directive

symbol,

.NCHR

characters

symbol 1is
in the
is not

.NCHR directive is flagged with an

legal

in the assembly listing.

separator

(comma,

space,

<string>

MACRO DIRECTIVES

represents a string of printable characters. If
the character string contains a legal separator
(comma, space, and/or tab) the whole string must
be enclosed within angle brackets (<>) or
up-arrows {("}. If the delimiting characters do
not match or if the ending delimiter cannot be
detected because of a syntactical error in the
character string (thus prematurely terminating its
evaluation}, the .NCHR directive is flagged with
an error code (A) in the assembly listing.

The .NCHR directive, which can appear anywhere in a MACRO-11 program,
is used to determine the number of characters in a specified character
string. This directive is useful in calculating the length of macro

arguments,

An example of the .NCHR directive is shown in Figure 7-2.

DN DGR

17

+TITLE NCHR
+ENABL LC
LIST ME

i+

i Illustrate the .NCHR directive

;..

«MACRD STRING MESSAG
+NCHR 3MESSAG
+WORD $3%
+ASCII /MESSAG/
+EVEN

«ENDHM

000000 MSG1: STRING <Hello>

000005 + NCHR $¢$,Helln
000000 0000035 +WORD (23]
000002 110 +ASCII /Hello/
000003 145
000004 154
000005 154
000006 157

+EVEN
000001 +END

i8

Figure 7-2 Example of .NCHR Directive

7.4.3 .NTYPE Directive

Format:
[label:]
where: label

symbol

-.NTYPE

.NTYPE symbol,aexp

represents an optional statement label.

represents any legal symbol. This symbol 1is
equated to the 6-bit addressing mode of the
following expression (aexp). If a symbol is not
specified, the .NTYPE directive is flagged with an
error code {(A) in the assembly listing.

SN —

MACRO DIRECTIVES

represents any legal separator (comma, space,

r
59“% and/or tab).

aexp represents any legal address expression, as used
with an opcode. 1If no argument is specified, an
error code (A) will appear in the assembly

listing.

The .NTYPE directive is used to determine the addressing mode of

a

specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it is flagged

with an error code (0) in the assembly listing.

An example of the use of an .NTYPE directive in a macro definition
shown in Fiqgure 7-3.

1 +TITLE NTYPE
2
et 3 +ENABL LC
£ 3 4 JLIST ME
5
& it
7 $ Illustrate the .NYYPE directive
8 .
9
i0 +MACRO SAVE ARG
11 +NTYPE $$3,ARG
12 JIF EG $%$8$370
13 KoV ARGy - (SP) iSave in redister wmode
14 JIFF
18 MoV #ARG»~-(SP) iSasve in non-redister wodse
16 +ENDC
Vi 17 +ENDNM
£ 3 18
19 000000 SAVE R1
000001 WNTYPE $$3%:R1
+IF EQ $8$870
000000 010146 MoV Ris~{SP) $Save in redgister mode
+IFF
MOV $R1,~(SP) $Save irn non-redister mode
+ENDC
20
21 000002 SAVE TEMP
0000467 +NTYPE 3,TEMP
+IF EQ $8$870
MOV TENP,-{(SF) iSave in redister wmode
« IFF
000002 012748 MOV STEMP,~(SP) iSave in non-redister mode
0000067
+ENDC
22
23 000006 000000 TEMP! +«WORD [}
24
295 000001 JEND

Figure 7-3 Example of .NTYPE Directive in Macro Definition

For additional information concerning addressing modes, refer
Chapter 5 and Appendix B.2.

to

MACRO DIRECTIVES

.ERROR

7.5 .ERROR AND .PRINT DIRECTIVES

Format:
[label:] .ERROR [expr] stext
where: label represents an optional statement label.

expr represents an optional expression whose value is
output when the ,ERROR directive is encountered
during assembly.

: denotes the beginning of the text string.

text represents the message associated with the .ERROR
directive.

The .ERROR directive is used to output messages to the listing file
during assembly pass 2. A common use of this directive is to alert
the user to a rejected or erroneous macro call or to the existence of
an illegal set of conditions in a conditional assembly. If the
listing file is not specified, the .ERROR messages are output to the
command output device.

Upon encountering an .ERROR directive anywhere in a source program,
MACRO-11 outputs a single line containing:

1. An error code (P)
2. The sequence number of the ,.ERROR directive statement
3. The value of the current location counter
4. The value of the expression, if one is specified
5. The source line containing the .ERROR directive.
For example, the following directive:
.ERROR A ;Invalid macro argument

causes a line in the following form to be output to the listing file:

Seq. Loc. Exp.
No. No. Value Text
P 512 085642 Q000376 .ERROR A ;Invalid macro argument

7-16

£

¥

MACRO DIRECTIVES

PRINT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the error code (P).

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is similar to a macro definition with only
one dummy argument. At each expansion of the indefinite repeat range,
this dummy argument is replaced with successive elements “of a real
argument 1list. Since the repeat directive and its associated range
are coded in-line within the source program, this type of macro
definition and expansion does not require calling the macro by name,
as required in the expansion of the <conventional macros previously
described in this chapter.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block. The rules
for specifying indefinite repeat block arguments are the same as for
specifying macro arguments (see Section 7.3).

7.6.1 LJ.IRP Directive 'lF‘F:

Format:

{label:} .IRP sym,<argument list>

(range of indefinite repeat block)

-

. ENDM

where: label represents an optional statement label.

NOTE

Although it is legal for a label to appear
on a .MACRO directive, this practice is
discouraged, especially in the case of
nested macro definitions, because invalid
labels or labels constructed with the
concatenation character will cause the
macro directive to be ignored. This may
result in improper termination of the
macro definition.

This NOTE also applies to .IRPC and .REPT.

sym

<argument list>

range

. ENDM

The .IRP directive i

MACRO DIRECTIVES

represents a dummy argument that is replaced with
successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRP directive 1is flagged with an error code (A)
in the assembly listing.

represents any legal separator (comma, space,
and/or tab).

represents a list of real arquments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator {comma, space, and/or tab). If no real
arguments are specified, no action is taken.

represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions, repeat ranges and/or the .MEXIT
directive {see Section 7.1.3).

indicates the end of the indefinite repeat block
range,

s used to replace a dummy argument with successive

real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block

range,

An example of the use of the .IRP directive is shown in Figure 7-4.

7.6.2 JIRPC Directi
Format:

[label:] L.IRPC

(range of

. ENDM

where: label

sym

IRPC

ve

sym,<string>

indefinite repeat block)

represents an optional statement label (see Note
in Section 7.6.1).

represents a dummy argument that is replaced with
successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRPC directive is flagged with an error code (A)
in the assembly listing.

o

(, ,,4«13
A

o

MACRO DIRECTIVES

v represents any legal separator (comma, space,
and/or tab).

<string> represents a list of characters, enclosed within
angle brackets, to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

range represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions, repeat
ranges and/or the .MEXIT directive (see Section
7.1.3).

. ENDM indicates the end of the indefinite repeat block
range.

The .IRPC directive 1is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument is replaced with
successive characters in the specified string.

An example of the use of the .IRPC directive is shown in Figure 7-4.

1 +TITLE IRPTST
2
3 +LIST ME
4 i+
S } Illustrate the IRP and .IRPC directives
& 3 bw creating 3 rair of RADSO tables
7 i-
8
¢ 000000 REGS? +IRP REG»<PC»SPrRS+R4yR31R2:R1,R0>
10 +RADSO /REG/
11 +ENDR
000000 0462170 »RADSO /PC/
000002 074500 +RADSQ /SP/
000004 072770 +RADSO /RS/
000006 072720 «RADSO /R4/
000010 072650 +RADSO /R3/
000012 072600 +RADSO /R2/
000014 072530 +RADSO /R1/
000016 0724460 +RADS0 /RO/
12
13 000020 REGS2¢ LIRPC NUM»<76543210>
14 +RADSO /R/NUM/
1% +ENDR
000020 073110 +RADSO /R7/
000022 073040 «RADSO /R&/
000024 072770 +RADSO /RS/
000026 072720 «RADSO /RA/
000030 0724650 +RADSO /R3/
000032 072600 +RADSO /R2/
000034 072530 +RADSO /R1/
000036 0724460 +RADS0 /RO/
16
17 000001 +END

Figure 7-4 Example of .IRP and .IRPC Directives

MACRO DIRECTIVES

.REPT

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR 'ENDR
Format:
[label:] .REPT exp

-

(range of repeat block)

. ENDR

where: label

exp

range

. ENDM
or
. ENDR

represents an optional statement label (see Note
in Section 7.6.1).

represents any legal expression. This value
controls the number of times the block of code is
to be assembled within the progranm. When the
expression value 1is 1less than or equal to zero
(#), the repeat block is not assembled. If this
expression 1is not an absolute value, the .REPT
statement is flagged with an error code (A} in the
assembly listing.

represents the block of code to be repeated. The
repeat block may contain macro definitions,
indefinite repeat blocks, other repeat blocks
and/or the ,MEXIT directive (see Section 7.1.3).

indicates the end of the repeat block range.

The .REPT directive is used to duplicate a block of code, a certain
number of times, in line with other source code.

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

-MCALL

.MCALL argl,arg2,...argn

Format:

where: argl,
AYg2 ;...
argn

represent the symbolic names of the macro
definitions required in the assembly of the source
program. The names must be separated by any legal
separator {comma, space, and/or tab).

)

MACRO DIRECTIVES

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are not defined within the
source program but which are required to assemble the program. The
.MCALL directive must appear before the first occurrence of a call to
any externally defined macro:

e Auto-Mcall mode is disabled (the default)

or

e The name of the macro being called is one of MACRO's permanent
symbols or directives, such as SUB, .ERROR, or .PRINT.

The /ML switch {(see Section 8.1.3) under RSX-11M and the /LIBRARY
qualifier (see Section 8.2.2) under IAS and RT-11, used with an input
file specification, indicate to MACRO-11 that the file is a macro
library. Additional macro 1libraries to be searched may also be
specified in the MACRO-11 program itself, using the MACRO-11 .LIBRARY
directive. See Section 6.18.1 for a description of the .LIBRARY
directive. When a macro call is encountered in the source program,
MACRO-11 first searches the user macro library for the named macro
definitions, and, if necessary, continues the search with the system
macro library.

Any number of such user-supplied macro files may be designated. For
multiple 1library files, the search for the named macros begins with
the last such file specified. The files are searched in reverse order
until the required macro definitions are found, finishing, if
necessary, with a search of the system macro library.

If any named macro is not found upon completion of the search, the
.MCALL statement is flagged with an error code (U} in the assembly
listing. Furthermore, a statement elsewhere in the source program
that attempts to expand such an undefined macro is flagged with an
error code (0) in the assembly listing.

The command strings to MACRO-11, through which file specifications are

supplied, are described in detail in the applicable system manual (see
Section #.3 in the Preface).

7.9 MACRO DELETION DIRECTIVE: .MDELETE 'MDELETE

Format:

.MDELETE namel,name2,...,namen

where: namel, represent legal macro names. When multiple
name2,... names are specified, they are separated by
namen any legal separator (comma, space, and/or tab).

The .MDFLETE directive deletes the definitions of the specified
macro(s), freeing virtual memory. If references are made to deleted
macros, the referencing line is flagged with an opcode (0) error.

An example of the .MDELETE directive is shown below.

.MDELETE .EXIT,EXITSS

e

CHAPTER 8

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

MACRO-11 assembles one or more ASCII source files containing MACRO-11
statements into a single relocatable binary object file. This binary
object file contains the table of contents 1listing, the assembly
listing, and the symbol table listing. An optional cross-reference
listing of symbols and macros is available. A sample assembly listing
is provided in Appendix H.

8.1 RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

On RSX-11M and RSX-11M-PLUS systems, two command languages are
available: the Monitor Console Routine (MCR) and the DIGITAL Command
Language (DCL). When you log onto the system, you are given either
MCR or DCL as the default command language. Your default command
language is contained in your account file.

By typing CTRL/C ("C) from the monitor prompt, you can see the
explicit prompt for the command language you are currently using.

> “cC
MCR>

> “C
DCL>

You can switch from one command language to the other. To switch from
DCL to MCR, type the following command:

DCL> SET TERMINAL MCR
To switch from MCR to DCL, type the following command:

MCR> SET /DCL=TI:
In addition to switching from one command language to the other, you
can type a DCL command from a terminal set to MCR, and an MCR command
from a terminal set to DCL, as shown below:

MCR> DCL cmd-string

DCL> MCR cmd-string

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

8.1.1 1Initiating MACRO-11 Under RSX-11M/RSX-11M-PLUS

The following sections describe those MACRO-11 operating procedures
that apply to both the Monitor Console Routine and the DIGITAL Command

Language. Any one of the four methods shown below may be employed to
initiate MACRO-11.

8.1.1.1 Method 1 - Direct MACRO-11 Call
MCR Format:

MCR>MAC
MAC>cmd-string

The Monitor Console Routine (MCR) accepts MAC as 1input, causing
MACRO-11 to be activated. Since a command string is not present with
the MCR line, MACRO-11 then solicits input with the prompting sequence
MAC> and waits for command string input. After the assembly of the
indicated files has been completed, MACRO-11 again solicits command
string input with the MAC> prompting sequence. This process will be
repeated until CTRL/Z ("Z) is entered.

DCL Format:

DCL> MACRO[/qualifier(s)]

File(s)? filespec[/qualifiers]...
DCL accepts MACRO as input. In addition, you may include the
qualifiers contained in Table 8-3. Since no file specifications are
included in the DCL command line, MACRO-11 solicits input with the
File(s) prompt. You can then enter the name of one or more source

files plus any of the qualifiers listed in Table 8-4. When you press
RETURN, MACRO-11 performs the assembly.

8.1.1.2 Method 2 - Single Assembly
MCR Format:
MCR>MAC cmd-string
DCL Format:
DCL> MACRO cmd-string
In method 2, no prompting from MACRO-11 occurs, since the command

string input is included in the command line. MACRO-11 then assembles
the source files in the command string and exits when finished.

8.1.1.3 Method 3 - Install, Run Immediately, and Remove On Exit

Format:

>RUN S$MAC
MAC>cmd-string

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

This method is used when the MACRO-11 assembler 1s not permanently
installed in the system. On RS8X=11M, the system must be generated for
this type of call support. MAC is run from the system directory.
MACRO-11 solicits command string input. The command string must have
the MCR format even if run from a DCL terminal. When MACRO-11 exits,
it is automatically removed from the system.

If the system has the "flying install" feature, the RUN §$ calling
format is not needed.

8.1.1.4 Method 4 - Using the Indirect Command Processor
MCR Formats:

MCR>MAC
MAC>@filespec

or
MCR>MAC @filespec
or

MAC>RUN SMAC[/UIC=[g,m]]
MAC>@filespec

These forms use the indirect command processor, which effectively
accomplishes the substitution of "@filespec" for the "cmd-string"
input employed in methods 1 through 3. 1In these formats, the indirect
command processor 1is passing commands to the assembler. The file
specified as "@filespec" contains MACRO-11 command strings. After
this file 1is opened, command lines are read from the file until the
end-of-file is detected. Three nested levels of 1indirect files are
permitted in MACRO-11.

MCR and DCL Format:
DCL> @filespec

These forms use the indirect command processor to pass commands to the
command language. This is the only form you can use with DCL. The
indirect command file "@filespec" must contain one of the command
lines to initiate MACRO-11 as listed in methods 1 through 3.

NOTE

MACRO-11 can be terminated by entering a
CTRL/Z ("Z) at any time a request for
command string input is present.

8.1.2 Default File Specifications

MACRO-11 accepts as input or creates as output up to six types of
files. When using the MACRO-11 assembler, you should keep in mind the
default device, directory, name, and types listed in Table 8-1. Table
8-1 lists the default values for each file specification.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-1
File Specification Default Values

Default Values

File Device Directory Filename Type
Object Your default Current None .0BJ
File volume
Listing Device used Directory None .LST
File for object used in
file Object file

Source Your default Current; None .MAC
Files volume used for

source 1

or device of
last source
file speci-

fied
user Your default Current, if None .MLB
Macro volume macro file
Library is specified

first; if not,
directory of
last source

file
System Library [1,1] RSXMAC .SML
Macro device
Library
Indirect Your default Current None .CMD
Command volume
File

8.1.3 MCR Command String Format

In response to the MAC> prompting sequence printed by MACRO-11, type
the output and input file specifications in the form shown below:

MAC>object,listing=srcl,src2,...,srcn
where: object represents the binary object (output) file.
listing represents the assembly 1listing (output) file
containing the table of contents, the assembly

listing, and the symbol table.

= separates output file specifications from input
file specifications.

srcl, represent the ASCII source (input) files
Src2,... containing the MACRO-11 source program or the
srcn user-supplied macro library files to be assembled.

IAS/RSX~-11M/RSX~11M-PLUS OPERATING PROCEDURES

Only two output file specifications in the command string will be
recognized by MACRO-11; any more than two such files will be ignored.
No limit is set on the number of source input files. If the entire
command string is longer than 86 characters and less than or equal to
132 characters, a hyphen can be placed at the end of the first line as
a continuation character.

A null specification in either of the output file specification fields
signifies that the associated output file is not desired., A null
specification in the input file field, however, is an error condition,
resulting in the error message "MAC -- Illegal filename" on the
command output device (see Section 8.5). Note that the absence of
both the device name (dev:) and the name of the file {(filename.type)
from a file specification is the equivalent of a null specification.

NOTE

When no listing file is specified, any
errors encountered in the source program
are printed on the terminal from which
MACRO~11 was initiated. When the /NL
switch 1is. used in the 1listing file
specification without an argument, the
errors and symbol table are output to
the file specified.

Each file specification contains the following information:
filespec /switch:value ...
where: filespec is the standard file specification.
/switch represents an ASCII name identifying a swiﬁch
option. This switch option may be specified in

three forms, as shown below, depending on the
function desired:

/switch Invokes the specified switch
action.

/noswitch Negates the specified switch
action,

/-switch Also negates the specified

switch action.

In addition, the switch identifier may be
accompanied by any number of the following values:
ASCII character strings, octal numbers, or decimal
numbers. The default assumption for a numeric
value is octal, Decimal values must be followed
by a decimal point (.).

Any numeric value preceded by a number sign (#) is
regarded as an explicit octal declaration; this
option is provided for documentation purposes and
ready identification of octal values.

Also, any numeric value can be preceded by a plus
sign (+) or a minus (-} sign. The positive
specification is the default assumption. If an

IAS/RSX~11M/RSX~11M~PLUS OPERATING PROCEDURES

explicit octal declaration is specified (#), the
sign indicator, if included, nmust precede the
number sign.

All switch values must be preceded by a colon (:).

The switch specifications are interpreted in the
context of the program to which they apply. The
switch options applicable to MACRO-11 are
described in Table 8-2 below,

A syntax error detected in the command string causes MACRD-11 to
output the following error message to the command output device:

MAC -- Command syntax error

followed by a copy of the entire command string.

At assembly time, you may want to override certain MACRO-11 directives

appearing in

source program or to provide MACRO-11 with

information establishing how certain files are to be handled during

assembly. You

specification.

can
selectively invoked

do so through one or more switches, which may be
as * additional parameters in each file
available switches for wuse in MACRO-11 file

specifications under RSX-11M/RSX-11M-PLUS are listed in Table 8-2.

Table 8-~2

MACRO~-11 File Specification Switches

Switch Function

/LI:arg Listing control switches; these options accept

/NL:arg ASCII switch values (arg) which are equivalent
in function and name to and override the
arguments of the L.LIST and .NLIST directives
specified in the source program (see Section
6.1.1). This switch overrides the arguments and
remains in effect for the entire assembly
process.

/EN:arg Function control switches; these options accept

/DS:arg ASCII switch values (arg) which are equivalent

/ML (see Note)

in function and name to and override the
arguments of the .ENABL and .DSABL directives
specified in the source program (see Section
£.2.1). This switch overrides the arguments and
remains in effect for the entire assembly
process,

The /ML switch, which takes no accompanying
switch wvalues, indicates to MACRO-11 that an
input file is a m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>