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CHAPTER 1
INTRODUCTION

1.1 MANUAL SCOPE

This manual provides a general description of the VAX-11/780
system in Chapter 1 and a detailed functional description of the
KA780 central processor in Chapter 2. For a complete discussion of
the KA780 central processor, this manual should be read in
conjunction with the Translation Buffer, Cache, SBI, Control
technical description and the KC780 Console Interface technical
description. The purpose of this manual is to provide a resource
for appropriate branch and support 1level courses of the Field
Service and Manufacturing training programs and as a field
reference.

Detailed information concerning system components not covered in
this manual can be found in the related literature listed in Table
l-lo

1.2 SYSTEM OVERVIEW

The VAX-11/780 system is a high-speed, synchronous microprogrammed
computer that represents a significant extension to the PDP-1l
family of computers. The processor is capable of executing
variable length instructions in native mode and non-privileged
PDP-11 instructions in compatibility mode. Compatibility mode
enables existing user mode PDP-11 programs to be run without
modification.

The major components of the VAX-11/780 system, shown. in Figure
1-1, include the following;

a. central processing unit (CPU)

b. memory cache

c. writable diagnostic control store (WDCS)
da. clocks

e. console subsystem

f. main memory and memory controllers

g. optional floating-point accelerator

h. Massbus adapter and Massbus peripherals
i. Unibus adapter and Unibus peripherals

1-1




Table 1-1 Related Hardware Manuals

Title Document Number
Translation Buffer, Cache,

SBI Contrnl Technical Description EK-MM780-TD *
MS780 Memnry System Technical

Descriptinn . EK-MS780A-TD *
DW78¢ Unibus Adaptor Technical

Description EK-DW780-TD *
RH78f Massbus Adapter

Technical Description EK-RH780-TD *
KC780 Console Interface Board

Technical Descriptinn EK-KC78C~-TD *
FP780 Flnating-Point Acceleréator

Technical Description EK-FP780-TD *
VAX-11/780 Hardware User Guide EK-UG78€-UG **
VAX-11/780 System Maintenance Guide EK-11780-PG **
VAX-11/780 Pawer System

Technical Descriptinn EK-PS78G-TD *
VAX-11/780 Installation Manual : EK-SI78C-IN **
DS780 Diagnostic System User's Guide EK-DS78A-UG **

DS780 Diagnostic System -
Technical Descriptinn EK-DS78@-TD *

** pAvailable on hard copy oanly.
* Available on hard copy and micrafiche.

For informatinn concerning microfiche libraries, contact:

Digital Equipment Carparation
Micropublishing Group

12 Craosby Drive

Bedford, MA 901730

Hardcopy documents can be ordered from:

Digital Equipment Corporation

444 whitney Street

Northborn, MA 01532

Attention: Communicatinn Services (NR2/M15)
Custnmer Services Sectinan
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Figure 1-1 VAX-11/780 System Block Diagram




These major hardware components operate on clocked 200 nanosecond
cycles. Normal operations are synchronized by the system clock and
each event occurs at defined points in time within the machine

cycle.

l1.2.1 Synchronous Backplace Interconnect

Data exchanges between the CPU, memory, and peripheral bus
adapters are made over a high-speed bus called the SBI
(Synchronous Backplace Internconnect). The SBI enables checked,
parallel information exchanges which are synchronized with the
system clock. .

The SBI has a physical address space of one billion bytes (23g).
The physical address space is all possible memory and I/0
addresses accessible to the processor. Allocation of the physical
address space is divided in half. The upper half is assigned to
1/0 addresses and the lower half is reserved for memory.

The VAX-11/780 memory manggement system provides a mechanism which
maps over four billion (277) bytes of virtual address space to one
billion bytes of physical address space. The virtual address space
is divided in half. The 1lower half (per process space) |is
designated for use by a process. A context switch changes the
mapping of all locations in the process space to accommodate the
current process. The upper half (system space) is shared by all
processes and remains the same during context switching. The
memory management system translates the addresses from virtual to
physical and also provides the capabilities for paging, swapping,
overlaying protection, and sharing.

1.2.2 Central Processing Unit _

Logical and arithmetic operations are performed by the central
processing unit. The processor provides sixteen 32-bit general
purpose registers that can be used for temporary storage, as
accumulators, index registers, and base registers.

The processor's microcode performs the virtual to physical address
translations. The address translations and associated memory
access protection information are stored in a translation buffer.
The system also includes a memory cache which reduces the average
memory access time.

The microcode is contained in a PROM (programmable read only
memory) control store. The standard control store contains 4K
96-bit microwords plus 3 parity bits per microword. Also included
is a writable diagnostic control store (WDCS) for updating the
microcode. The WDCS is a RAM (random access memory) which contains
1K 96-bit microwords plus 3 parity bits per microword.

1.2.3 MS780 Main Memory

The VAX-11/78¢ main memory (MS78¢) is a MOS (metal oxide
semiconductor), random.access memory subsystem which consists of a
controller and one to sixteen array boards. Memory features
include an error checking and correction (ECC) scheme which can

14




detect all double-bit errors and detect and correct all single-bit
errors.

Each memory controller can access a maximum of 1M bytes. Two
memory controllers can be connected to the SBI yielding a maximum
of 2M bytes of physical memory available to the system.

The VAX-11/788 system includes two standard clocks in addition to
the system clock. The programmable real-time clock is used by the
operating system and by diagnostics. The time-of-year clock is
used for system operations and includes a battery back-up  for
automatic system restart operations.

1.2.4 Console Subsystem

The console subsystem provides the interface between the operator
and the processor. The subsystem includes an LSI-ll microprocessor
(KD11-F) with a 4K by 16-bit RAM, a floppy disk drive and
controller (RXV1l), a system terminal and two serial 1line
interface units (DLV11-E). The console interface board (CIB)
contains a 4K by 16-bit ROM for the LSI-11 microprocessor. The
control panel is located on the VAX-11/780 cabinet.

1.2.5 Peripheral Controllers
Peripherals are connected to the SBI through two types of
adapters; the Massbus adapter and Unibus adapter.

The Massbus adapter provides the interface for high speed disk or
magnetic tape devices. Up to four Massbus adapters can be placed
on the SBI. Each adapter includes a translation map that allows
the transfer of physically continuous disk blocks to/from
discontiguous blocks of memory. The Massbus adapter includes a
silo (32-byte data buffer) to enable efficient transfer of data
from memory to the Massbus device. Data being transferred from the
Massbus device to memory is assembled into 64-bit quadwords (plus
parity) to make use of the SBI bandwidth.

The Unibus adapter provides the interface for a number of I/0
devices, including terminals, line printers and card readers. The
"adapter translates 18-bit Unibus addresses to 38-bit SBI addresses
and provides priority arbitration among devices on the Unibus. It
allows the processor to access Unibus peripheral device registers
and allows Unibus devices access to random main memory locations.
High speed Unibus devices can also access consecutive memory
locations within a memory page. The adapter provides buffered
direct memory access data paths for up to 15 non-processor request
(NPR) devices. Each data path has a 64-bit buffer (plus byte
parity) which holds four 16-bit PDP-11 data words. Therefore, only
one SBI operation is required for every four Unibus transfers.




1.2.6 Floating-Point Accelerator

An optional floating-point accelerator (FPA) is available in the
VAX-11/788 system. The FPA extends the processor's capabilities
and improves the speed and performance of floating-point
instructions. The floating-point accelerator executes addition,
subtraction, multiplcation and division instructions that operate
on single- and double-precision floating-point operands, including
the special EMOD and POLY instructions in both single- and
double-precision formats. The floating-point accelerator is not
required for the processor to execute floating-point instructions
and it can be added or removed without changing existing software.

For a complete discussion of the floating-point accelerator,
peripheral adapters, memory system, or console subsystem,
reference should be made to the associated manual listed in Table
1-1.
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1.3 SYSTEM ARCHITECTURE

1.3.1 Addressing

The native instruction set is capable of operating on a wide range
of data types including an 8-bit byte, 16-bit word, 32-bit
longword, etc. However, the basic addressable unit in the
VAX-11/788 system is the 8-bit byte. The 32-bit virtual address
will identify a particular byte 1location and the data type
specified by the instruction will identify the number of bits to
be treated as a unit in the operation.

The 4 billion bytes of virtual address space are allocated as
shown in Figure 1-2. The upper half is designated system virtual
space and shared by all processes. Note that the highest quarter
of virtual space is reserved for future use. The lower half of
virtual address space is designated for process space and contains
information relating to the current process. Per process space is
further divided into program space and control space. Program
space contains process images currently executing on the system
and control space contains user stacks and I/0 buffers for the
current process.

The virtual addresses generated are translated into physical
addresses under operating system control. Each 39-bit physical
address corresponds to an actual location in main memory. The
physical address space (Figure 1-3) is divided in half. Device
control registers are assigned to the upper half and the lower
half is reserved for primary memory. A detailed explanation of the
address translation process is provided in the TB/CACHE/SBI
technical description (refer to Table 1-1).
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Figure 1-3 Physical Address Space




1.3.2

Data Types

The native instruction set operates on several data
different sizes and formats including the following;

a.

b.
Ce
d.

Integer

Byte

Word

Longword

Quadword

Floating/Double Floating
Variable Length Bit Field
Character String

Decimal String

Trailing Numericl String
Leading Seperate Numeric String
Packed Decimal String

types

of

The following paragraphs provide a brief description of each of

the data
1.3.2.1

can be treated as unsigned or signed

complement form). The integer data types are termed byte (8 bits),

word (16

types listed above.

Integer —- Four integer data types can be specified, each
of which represents quantities in a binary format. The quantities

(represented in twos

bits), longword (32 bits) and quadword (64 bits). Refer
to Figure 1-4.

WORD BYTE
15 00 07 00
A
LONGWORD
31 00
QUADWORD
31 00
63 32

Figure 1-4 1Integer Data Formats

A+4

TK-1185




Each of the data types is specified by its address A, the address
of the byte containing bit @. When interpreted arithmetically, the
byte, word, longword, or quadword is a 2's complement integer with
bit # as the least significant bit. The sign of a byte, word,
longword, or quadword is bit 7, bit 15, bit 31 or bit 64,
respectively. Each of these data types can also be interpreted as
an unsigned integer. The following gives the range of integer
values that can be represented by each of the data types.

Integer Range

Data Type Size Signed Unsigned
Byte 8 bits -128 to +127 P to 255
Word 16 bits -33168 to 5}2767 @ to 65535
Longword 32 bits -263 to +263- g to 264-1
Quadword 64 bits -2 to +27°-1 @ to 2771

1.3.2.2 Floating-Point -- The floating-point data types are used
to represent approximations to quantities for which scaling is not
specified in the program. Floating-point data is stored in
scientific notation as a power of two times a fraction in the
range of 8.5 (inclusive) to 1.8 (exclusive). The data format
consists of three fields: the sign, the power of two exponent, and
the fractional magnitude. The VAX-11/788 provides two types of
floating-point data: single precision (32 bits) and double
precision (64 bits). These are termed floating and double
floating, respectively. :

A floating datum is 4 contiguous bytes, specified by its address A
(the address of the byte containing bit @) and formatted as shown
in Figure 1-5.

15 14 07 06 00

S EXPONENT FRACTION A
FRACTION

31 16

TK-1186

Figure 1-5 Floating Data Formats
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The form of a floating datum is sign magnitude with bit 15 the
sign bit, bits 14:7 an excess 128 binary exponent, and bits 6:9
and 31:16 a normalized 24-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction,
bits of increasing significance go from 16 through 31 and @
through 6. The 8-bit exponent field encodes the values @ through
255. An exponent value of @, together with a sign bit of 0, is
taken to indicate that the floating datum has a value of @.
Exponent values of 1 through 255 indicate true binary exponents of
-127 through +127. An exponent value of @, together with a sign
bit of 1, is taken as reserved. Floating-point instructions
processing a reserved operand take a reserved operand fault. 258
value of a floaséng datum is in the approximate range «29*%10

through 1.7*106° . The cision of a floating datum is
approximately one part in 2°°, i.e., typically 7 decimal digits.

A double floating datum is 8 contiguous bytes, specified by its
address A (the address of the byte containing bit @) and formatted
as shown in Figure 1-6.

15 14 07 06 00
= EXPONENT FRACTION A
FRACTION
FRACTION
FRACTION

63 48

TK-1187

Figure 1-6 Double Floating Data Formats

The format of a double floating datum is the same as the floating
datum except for an additional 32 low significance fraction bits.
Within the fraction, bits of increasing significance go from 48
through 63, 32 through 47, 16 through 31, and 8 through 6. The
exponent conventions and approximate range of values is the same
for double floating. The pgﬁ;ision of a double floating datum is
approximately one part in 2°°, i.e., typically 16 decimal digits.




1.3.2.3 Variable Length Bit Field =-- The variable 1length bit
field is a data type used to store small integers packed together
in a larger data structure. This saves memory when many small
integers are part of a larger structure. A specific case of the
variable bit field is that of one bit. This form is used to store
and access individual flags efficiently.

A variable bit field is @ to 32 contigquous bits 1located
arbitrarily with respect to byte boundaries. A variable bit field
is specified by three characteristics; the address (A) of a byte,
the bit position (P) that is starting location of the field with
respect to bit & of the byte at A, and the size S of the field.
Figure 1-7 illustrates the format of the bit field where the field
is the shaded area.

31 P+S P+S-1 P P=1 00

Figure 1-7 Bit Field Format

The VAX-11/780 field instruction provides for the interpretation
of a field as a signed or unsigned integer. When interpreted as a
signed integer, it is represented in two complement form with bits
of increasing significance going from @ through S-2 with bit s-1
as the sign bit. When interpreted-as an unsigned integer, bits of
increasing significance go from @ through S-l.

1.3.2.4 Character String -- The character string is a data type
used to represent strings of characters such as names, data
records or text. Typical operations include copying,
concatenating, searching, and translating the string rather than
arithmetic or logical operations.
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A character string is a contiguous sequence of bytes in memory
specified by the address (A) of the first byte of the string and

the length (L) of the string in bytes. Figure 1-8 illustrates the
format of a character string.

07 00

07 ’ 00

:A+L-1

TK-1189

Figure 1-8 Character String Format

The length L of a string is in the range @8 through 65,535. A
string with length 8 is termed a null string.

1.3.2.5 Decimal String -- The decimal string data types are used
to store scaled quantities in a form that closely resembles theit
external representation. This data representation is used
frequently in programs that simply move or transfer the
information rather than perform computation on the information.
The decimal string data types include formats in which each
decimal digit occupies one byte (numeric string) and a more
compact form in which two decimal digits occupy one byte (packed
decimal string). The numeric string form is used to represent many
external data arrangements exactly and therefore appears in
several representations. The most significant difference between
the representations is whether the sign, if any, appears before
the first digit or whether it is superimposed on the final digit.

These are termed leading seperate and trailing numeric strings
respectively. . :
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1.3.2.5.1 Trailing Numeric String -- A trailing numeric string is
a contiguous sequence of bytes in memory specified by two
characteristics: the address A of the first byte (most significant
digit) of the string, and the length L of the string in bytes.

All bytes of a trailing numeric string, except the last (least
significant digit), must contain an ASCII decimal digit character.
The representation for digits in all bytes, except the 1last, is
shown as follows:

digit decimal hex ASCII character
0 48 30 2
1 49 31 1
2 58 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 S5 37 7
8 56 38 8
9 57 39 9

The highest address byte of a trailing numeric string represents
an encoding of both the least significant digit and the sign of
the numeric string. The VAX-1ll numeric string instructions support
any encoding; however there are three preferred encodings used by
DIGITAL software. These are (1) unsigned numeric in which there is
no sign and the least significant digit contains an ASCII decimal
digit character, (2) zoned numeric, and (3) overpunched numeric.
Because the overpunch format has been used by compilers of many
manufacturers over many years, and because various card encodings
are used, several variations in overpunch format have evolved.
Typically, these alternate forms are accepted on input. The valid
representations of the digit and sign in each of the later two
formats is shown in Table 1-2.
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Table 1-2 Representation of Least Significant Digit and Sign

Zoned Numeric Format Overpunch Format

ASCII ASCII [char.

digit decimal hex char. decimal hex norm alt.

) 48 30 ) 123 78 { {2
1 49 31 1 65 41 A a
2 50 32 2 66 42 B b
3 51 33 3 67 43 c c
4 52 34 4 68 44 D d
5 53 35 5 69 45 E e
6 54 36 6 70 46 F f
7 55 37 7 71 47 G g
8 56 - 38 8 72 48 H h
9 57 39 9 73 49 I i

-0 112 70 P 125 7D } IR
-1 113 71 g 74 4A J j
-2 114 72 r 75 4B K k
-3 115 73 s 76 4C L 1
-4 116 74 t 77 4D M m
-5 117 75 u 78 4E N n
-6 118 76 v 79 4F o o
-7 119 77 w 80 50 P P
-8 120 78 X 8l 51 Q q
-9 121 79 Yy 82 52 R r

The length L of a trailing numeric string is in the range of 0 to
31 bytes (@ to 31 digits). The value of a @ length string is
identically @. The address A of the string specifies the byte of
the string containing the most significant digit. Digits of
decreasing significance are assigned to increasing addresses.
Figure 1-9 illustrates the representation of both a positive and
negative value in a trailing numeric string format.
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ZONED FORMAT OR UNSIGNED

OVERPUNCH FORMAT

07 04 03 00 07 04 03
3 4 . A 3 A
3 5 A+ 3 A+1
3 6 A+2 4 A+2

REPRESENTATION OF NUMBER +456

ZONED FORMAT, OVERPUNCH FORMAT

07 04 03 00 07 04 03
3 4 A 3 A
3 5 A+ 3 A+l
7 6 tA+2 4 A+2

REPRESENTATION OF NUMBER —456

TK-1190

Figure 1-9 Trailing Numeric String Formats

1.3.2.5.2 Leading Separate Numeric String -- A leading separate
numeric string is a contiguous sequence of bytes in memory
specified by two characteristics; the address A of the first byte
(containing the sign character) and a length L that is the length
of the string in digits. Note that L is not the length of the
string in bytes. The number of bytes in a leading separate numeric
string is L + 1.

The sign of a leading separate numeric string is stored in a
seperate byte. The following shows valid signs and their byte

representation:

sign decimal hex ASCII character -
+ 43 . 2B +

+ 32 20

<blank>
- 45 2D -
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All bytes other than the sign byte will contain an ASCII digit
character which are represented as follows:

digit decimal - hex ASCII character
) 48 30 )
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

The length L of a leading separate numeric string is in the range
of @ to 31 bytes (8 to 31 digits). The value of a @ length string
is identically @ and contains only the sign bit.

The address A of the string specifies the byte of the string
containing the sign. Digits of decreasing significance are
assigned to bytes of increasing addresses. Figure 1-18 illustrates
the representation of both a positive and negative value in a
leading separate numeric string format.

07 04 03 00
|
2 B A
3 4 A+
3 5 A+2
3 6 :A+3

REPRESENTATION OF NUMBER +456

07 04 03 00
2 D A
3 4 A+
3 5 A+2
3 6 :A+3

REPRESENTATION OF NUMBER —-456

TK-1173

Figure 1-10 Leading‘Separate Numeric String Format
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1.3.2.5.3 Packed Decimal String -- A packed decimal string is a
contiguous sequence of bytes in memory specified by two
characteristics: the address A of the first byte of the string and
the length L that is the number of digits in the string. Note that
L is not the number of the string in bytes. The bytes of a packed
decimal string are divided into two 4-bit fields (nibbles). Each
nibble contains a decimal digit, except the low nibble (bits 3:0)
of the last (highest addressed) byte which must contain a sign.

The representation for the digits and sign is as follows:

digit or signv decimal hex

19,12,14, or 15
11 or 13

E, or F

| + OO0 BWNF-HES
VOO EWN-E
WP OOV WNH-S

*C,E,
or D

’
r
The preferred sign representation is 12 for "+" and 13 for "-".
The length L is the number of digits in the packed decimal string
(not including the sign) and is in the range of @ through 31. The
address A of the string specifies the byte of the string
containing the most significant digit in its high nibble. Digits
of decreasing significance are assigned to increasing byte
addresses and from high nibble to low nibble within a byte. Figure
1-11 illustrates the representation of two values; one value
containing an odd number of digits and the other value containing
an even number of digits. Note that if the number of digits is
even, an extra "@" digit is required in the high nibble (bits 7:4)
of the first byte of the string.
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07 0403 00

REPRESENTATION OF VALUE (+456) WITH ODD NUMBER OF DIGITS

07 04 03 00
0 4

5 13

REPRESENTATION OF VALUE (—45) WITH EVEN NUMBER OF DIGITS

TK-1174

Figure 1-11 Packed Decimal String Format

1.3.3 General Registers

The VAX-11/780 provides sixteen general purpose registers,
designated R15 through R@. These registers can be used for
temporary storage of data and addresses. These registers are
accessed when the register number is explicitly identified in an
operand specifier or when a register is implicitly identified by
the machine operation. Certain general registers are always used
by software for a particular purpose and are denoted as follows;

PC R15 is the Program Counter (PC). The PC points to the
next byte of the program and is updated by the processor
as the program progresses. The PC cannot be used as a

temporary register, an accumulator, or an index
register.

SP R14 is the Stack Pointer (SP). Several instructions make
implicit references to SP, and most software assumes
that SP points to memory set aside for use as a stack.
There is no restriction on the explicit use of other
registers (except PC) as stack pointers, though those
instructions which make implicit references to the stack
always use SP.

1-19




FP

AP

R6-R11l

R@-RS

1.3.4

R13 is the Frame Pointer (FP). The VAX-ll procedure cal
convention builds a data structure on the stack called

stack frame. The CALL instructions load FP with the bas:
address of the stack frame, and the RETurn instructio.
depends on FP containing the address of a stack frame
Further, VAX-ll software depends on maintenance of F:
for correct reporting of certain exceptional conditions

R12 is the Argument Pointer (AP). The VAX-1l1l procedur:
call convention uses a data structure called an argumen:
list, and uses AP as the base address of the argumen:
list. The CALL instructions load AP in accordance witl!
that convention, but there is no hardware or softwar:
restriction on the use of AP for other purposes.

Registers R6 through R1ll have no special significanc:
either to hardware or the operating system. Specific
software will assign specific uses for each register.

Registers RO through R5 are generally available for an:
use by software, but are also 1loaded with specific
values by those instructions whose execution must be
interruptable--the character string, decimal arithmetic,

" RC, and POLY instructions. The specific instructio:

descriptions identify which registers are used, and wha!
values are loaded into them.

Stacks

Stacks, also called pushdown lists or last-in first-out queues.
are used in the VAX-11/780 as follows:

ae.

At the entry to a subroutine, the general registers
(including the PC) are saved so that they can be restorec
at exit from the subroutine.

The PC, PSL, and general registers are saved at the time
of interrupts and exceptions, and during context
switches.

The stacks are used to create storage space for temporary
use or for nesting of recursive routines.

A stack is defined by a block of memory and a general register
(stack pointer) which addresses the top of the stack. The top of
the stack is that memory location which will be read when an item
is removed from the stack. An item is added to the stack (pushed
on) by first decrementing the stack pointer and then storing the
item at the address contained in the updated stack pointer. The

pointer is decremented by the length of item added to the stack so
that there is sufficient room to store it. :




When an item is removed (popped off) from the stack, the length of
the item is added to the stack pointer. These operations are built
into the basic addressing mechanisms of the VAX-11/7890
instructions.

Many processor operations make use of the stack implicitly without
identifying the SP in an operand specifier. This occurs in
instructions used in calling and returning from subroutines, and
in processor sequences which initiate and terminate interrupt or
exception service routines. In this case, the processor uses the
stack addressed by R1l4. This does not mean that exceptions,
interrupts, and system services are performed on the same stack as
is used by user-mode programs. The processor maintains five
internal registers as pointers to separate blocks of memory to be
used as stacks, and uses one or another as SP depending on the
current access mode and interrupt stack bit in the processor
status longword. Whenever the current access mode and/or interrupt
stack bits change, the processor saves the contents of SP into the
internal register selected by the old value of those bits, and
loads SP from the register selected by the new value. There is one
interrupt stack for the entire system, but the kernel, executive,
supervisor, and user mode stacks are different for each process in
the system. Figure 1-12 illustrates the relationship between the
five stacks and multiple processes.

PROCESS 1 PROCESS 2 PROCESS 3 -
4 USER 1 USER 2 :
STACK STACK
SUPERVISOR 1 | SUPERVISOR 2
STACK STACK
EXECUTIVE 1 | EXECUTIVE 2
STACK STACK
GREATER MODE
KERNEL 1 KERNEL 2
LESSER PRIVILEGE STACK STACK
INTERRUPT STACK
(ALL PROCESSES)

TK-1178

Figure 1-12 Relationship Between Stacks and Processes
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The multiple-stack mechanism provides the following advantages
over a single stack:

a. User mode programs are not subject to sudden and
non-reproducible changes in the data beyond the end of
their stack.

b. The integrity of a privileged mode program cannot be
compromised by a less privileged caller. Even if the
caller has completely filled its own stack, the
privileged code is in no danger if running out of space
because separate blocks of memory are allocated to the
stack associated with each mode.

Ce. Privileged mode programs are not vulnerable to accidental
destruction of the stack pointer by 1less privileged
programs.

1.3.5 Processor Status Longword (PSL)

There are a number of processor state variables associated with
each process, which are grouped together into the 32-bit Processor
Status Longword or PSL. Bits 15-0 of the PSL are referred to
seperately as the Processor Status Word (PSW). The PSW contains
unprivileged information, and those bits of the PSW which have
defined meaning are freely controllable by any program. Bits 31-16
of the PSL contain privileged status, and while any program can
perform the REI instruction (which loads PSL), REI will refuse to
load any PSL which would increase the privilege of a process, or
create an undefined state in the processor. Figure 1-13 shows the
format of the Processor Status Longword.

31 30 29 28 27 2625 24 23 22 21 20 16 15 08 07 06 05 04 03 02 01 00
I mBZ ! IPL RESERVED TIN|Z|V]|C

| LI

™ FPD | CUR mBz DV v

MODE
TP IS PREV - FU
MODE

TK-1176

Figure 1-13 Processor Status Longword




Bits 3:0 of the PSL are termed the condition codes. These bits are
used to reflect the status of the result of the most recent
jnstruction. Refer to the VAX-11/788 Architecture Handbook for
details as to how each individual instruction affects the
condition codes. The following provides of brief description of
the condition codes: <

N--Bit 3 is the Negative condition code; in general it is set by
instructions in which the result stored is negative, and cleared
by instructions in which the result stored is positive or =zero.
For those instructions which affect N according to a stored
result, N reflects the actual result, even if the sign of the
result is algebraically incorrect as a result of overflow.

Z--Bit 2 is the Zero condition code; in general it is set by
instructions which store a result that is exactly zero, and
cleared if ‘the result is not zero. Again, this reflects the actual
result, even if overflow occurs.

V--Bit 1 is the oVerflow condition code; in general it is set
after arithmetic operations in which the magnitude of the
algebraically correct result is too large to be represented in the
available space, and cleared after operations whose result fits.
Instructions in which overflow is impossible or meaningless either
clear V. or leave it unaffected. Note that all overflow conditions
which set V can also cause traps if the appropriate trap enable
bits are set. 4 .

C--Bit @ is the Carry condition code; in general it is set after
arithmetic operations in which a carry out of, or borrow into, the
most significant bit occurred. C is cleared after arithmetic
operations which have no carry or borrow, and either cleared or
unaffected by other instructions. The C bit is unique in that it
not only determines the operation of conditional branch
instructions, it also serves as an input variable to the ADWC (Add
with Carry) and SBWC (Subtract with Carry) instructions used to
implement multiple-precision arithmetic.

Bits 4-7 of the PSL are trap enable flags which cause traps to
occur under special circumstances and are described as follows:

T--Bit 4 is the Trace bit; when set, it causes a trace trap to
occur after execution of the next instruction. The facility is
used by debugging and performance analysis software to step
through a program one instruction at a time.
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IV--Bit 5 is the Integer oVerflow trap enable; when set, it causes
an integer overflow trap after any instruction which produced an
integer result that could not be correctly represented in the
space provided. When bit 5 is clear, no integer overflow trap
occurs. The V condition code is set independently of the state of

FU--Bit 6 is the Floating Underflow Trap enable. When set, it
causes a decimal overflow trap after the execution of any
instruction which produces a decimal result whose absolute value
is too large to be represented in the destination space provided.
When DV is clear, no decimal overflow trap occurs. The result
stored consists of the 1low-order digits and sign of the
algebraically correct result.

NOTE
There are other trap conditions for
which there are no enable flags-division
by zero and floating overflow.

Bits 8-15 of the PSL are unused and reserved;

As previously mentioned, bits 31-16 of the PSL contains privileged
status and are described below:

"IPL--Bits 16-20 represent the processor's Interrupt Priority
Level. An interrupt, in order to be acknowledged by the processor,
must be at a priority higher than the current IPL. Virtually all
software runs at IPL &, so the processor acknowledges and services
interrupt requests at any priority. The interrupt service routine
for any request, however, runs at the IPL of the request, thereby
temporarily blocking interrupt requests of 1lower or equal
priority. There are 31 priority levels above zero, numbered in hex
81 through 1F. Interrupt levels @81 through OF exist entirely for
use by software. Levels 18 through 17 are for use by peripheral
devices and their controllers, though present systems support only
14 through 17. Levels 18 to 1lF are for use for urgent conditions,
including the interval clock, serious errors, and power fail.

Previous Mode--Bits 22-23 represents the previous mode field,
which contains the value from the current mode field at the most
recent exception which transferred from a less privileged mode to
this one. Previous mode is of interest only in the PROBE
instructions, which enable privileged routines to determine
whether a caller at the previous mode is sufficiently privileged
to reference a given area of memory.
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Current Mode--Bits 24-25 present the current mode field, which
determines the privilege level of the currently executing program.
The values of mode are:

@--Kernel; mast privileged, including the ability to perform all
instructions

l1--Executive

2--Supervisor

3--User; least privileged

Privilege is granted in two ways by the mode field. Certain
instructions (HALT, Move To Processor Register, and Move From
Processor Register) are not performed unless the current mode is
kernel. The memory management logic controls access to virtual
addresses on the basis of the program's current mode, the type of
reference (read or write), and the protection code assigned to
each page of the address space.

IS--Bit 26 is the Interrupt Stack flag, which indicates that the
processor is using the special interrupt stack rather than one of
the four stacks associated with the current mode. When IS is set,
the current mode is always kernel; thus software operating on the
interrupt stack has full kernel-mode privileges.

FPD--Bit 27 is the First Part Done flag, which the processor uses
in certain instructions which may be interrupted or page faulted
in the middle of their execution.

If FDP is set when the processor returns from an exception or
interrupt, it resumes the interrupted operation where it left off,
rather that restarting the instruction. .

Tp--Bit 3@ is the Trace Pending bit, which is wused by the
processor to ensure that one, and only one, trace trap occurs for
each instruction performed with the Trace bit (bit 4) set.

CM--Bit 31 is the Compatibility Mode bit. When CM is set, the
processor is in PDP-1l compatibility mode, and executes PDP-11
instructions. When CM is clear, the processor is in native mode,
and executes VAX-11l instructions.
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1.4 INSTRUCTION FORMATS

The VAX-11/780 executes both variable length native mode (VAX-11)
instructions and fixed 1length compatibility mode (PDP-11)
instructions. The compatibility mode instructions are 1in the
standard 16-bit, PDP-1l1 format and are stored in two contiguous
bytes in memory.

The native mode instructions vary in length and format depending
on the type of instruction and addressing mode used. Figure 1-14
illustrates the general format of a VAX-ll instruction.

OPERAND IMMEDIATE OPERAND SPECIFIER OPERAND OPCODE
SPECIFIER N DATA SPECIFIER2 | EXTENSION | SPECIFIER 1 | 1'5R 2 gyTES)
(10R28YTES)| __ (1.2 4 ORBBYTES)| (1 OR 2 BYTES)| (1 TO 6 BYTES)| (1 OR 2 BYTES)

TK-0283

Figure 1-14 General Format of VAX-ll Instructions

The presently available instruction set uses a one byte operation
code (op code). An instruction may consist of an opcode alone or
may consist of an op code and multiple operand specifiers. The
operand specifier indicates the manner (addressing mode and
register information) in which the operand is to be accessed.
Certain addressing modes require an extension to be appended to
the operand specifier. The specifier extension can be used as a
displacement or can be immediate data. Immediate denotes that the
data or address immediately follows the operand specifier.
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1.4.1 Op Code

The op code of each instruction specifies the operation to be
performed and the number of operands to be used in the operation.
The data and access types of each operand are also dictated by the
op code. The op code of each instruction is listed in Appendix A.
The following lists the possible data and access types of each
operand:

° Byte--8-bits
° Word--16-bits
° Longword--32-bits

° Flbating--32-bit single-precision floating point (same as
longword for addressing mode considerations).

° Quad word--64-bit

° Double--64-bit double-precision floating point (same as
quad word for addressing mode considerations).

An operand may be accessed in one of the following ways:
° Read--The specified operand is read only.
° Write--The specified operand is written only.

° Modify--the specified operand is read, may or may not be
modified and is written.’

° Address--Address calculation occurs until the actual
address of the operand is obtained. In this mode, the
data type indicates the operand size to be used in the
address calculation. The specified operand is not
accessed directly although the instruction may
subsequently use the address to access that operand.

° Variable field--If just Rn is specified, the field is in
the general register (R[n]). Otherwise, address
calculation occurs until the actual address of .the
operand is obtained. This address specified the base to
which the field position (offset) is applied.

° Branch--No operand is accessed. The operand specifier

itself is a branch displacement. In this specifier, the
data type indicates the size of the branch displacement.

1-27




1.4.2 Operand Specifier

The operand specifier provides the information required to locate
the operand. In literal modes, the operand specifier actually
includes the operand value. The format of the operand specifier
includes the addressing mode and any register designators that are
required. In certain addressing modes, the operand specifier is
extended with additional data. The specifier extension can be used
as displacement data, immediate data, or an absolute address. The
format of the operand specifiers are shown with each associated
addressing mode in paragraphs 1.5.2.1.1 through 1l.5.2.2.4.

1.5 NATIVE MODE ADDRESSING .
Native Mode Addressing can be broadly categorized into branch mode
addressing and general mode addressing.

1.5.1 Branch Mode Addressing

The two types of addressing modes used with branch instructions
are termed byte displacement and word displacement. Figure 1-15
illustrates the operand specifier formats used with each of the
two addressing modes.

Q7

00
DISPLACEMENT —I

BYTE DISPLACEMENT

15 . o
DISPLACEMENT

WORD DISPLACEMENT

TK-1182

Figure 1-15 Operand Specifier Formats For Branch Mode Addressing
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1.5.2 General Mode Addressing

General mode addressing implements the processor's sixteen general
purpose registers. The only general addressing mode which does not
use a general purpose register is literal mode, in which the
operand actually contained in the operand specifier.

Table 1-3 summarizes the addressing modes, listing the value of
the mode specifier, the assembler notation, the modes which may be
indexed, and the access types which may be used with each mode.
Also shown is the result of using the program counter (R15) or
stack pointer (R14) in each of the general addressing modes. The
program counter addressing modes use R15 (PC) as the general
register.

1.5.2.1 General Register Addressing -- General register mode
addressing excludes use of the PC (R15) in the operand specifier
but implements the remaining fifteen general purpose registers (RO
through R15). When these general registers are used for temporary
storage or as an accumulator, the data is stored in the register
in the same format as it would be in memory. If a quadword or
floating datum is stored in a general register, it is actually
stored in two adjacent registers.

If the registers are used as pointers, the content of the register
is the address of the operand rather than the operand itself. The
register is referred to as a base register if it contains the
address of a data structure such as a table or queue. The
registers can also be used as pointers which automatically ste
through memory locations. Automatically stepping forward througg
consecutive locations is called autoincrement addressing and
automatically stepping backwards is called autodecrement
addressing. These addresssing modes are useful for processing
‘tabular data and manipulating stacks. When the general registers
are used as an index register, an offset is generated and added to
the base operand address to yield the indexed location. This is
called index mode addressing.

The following paragraphs provide a brief description of each
general register addressing mode and the associated operand
specifier format.

l1.5.2.1.1 Register Mode -- In register mode, any of the general
registers may be used as simple accumulators and the operand is
containéd in the selected register. Since they are hardware
registers within the processor, they provide speed advantages when
used for operating on frequently-accessed variables.

07 04 03 00

TK-1177

Figure l-lG Operand Specifier Format in Register Mode
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Table 1-3 Summary of Addressing Modes

GENERAL REGISTER ADDRESSING

Hex | Dec | Name Assembler rmwav|PC|SP| Indexable?
9-3 | 0-3 | literal S°#literal | y £ £ £ £ |- | - 4
4 4 indexed i [Rx] YYYYYIE |y £
S S register Rn YYyYy£fylu ug f
6 6 register deferred (Rn) YYYYY|lu |y Yy
7 7 autodecrement - (Rn) YYYYY|u Y ux
8 8 autoincrement (Rn)+ YYYYYI|P Y ux
9 9 autoincrement .
deferred e(R)+ Yyvyyvyvyile |y ux
A 10 | byte displacement B°D (Rn) YYYYY|P |Y Y
B 11 byte displacement
deferred . @B°D (Rn) YYYYY|P |Y Y
c 12 | word displacement W'D (Rn) YYYYY|P |Y Y
D 13 word displacement
deferred @W"D (Rn) YYYYY|P |Y Y
E 14 longword displacement L°D (Rn) YYyyYyyvyyvyilep |y y
F 15 longword displacement
deferred LD (Rn) YYYYY|P |Y Yy
PROGRAM COUNTER ADDRESSING
Hex | Dec | Name Assembler rmwav |Indexable?
8 8 immediate I%#constant { yuuyy Yy
9 9 absolute @#address YYYYY y
A 16 | byte relative B"address YYYYY Y
B 11 byte relative
deferred @B"address |y yyyy y
(of 12 | word relative W"address YYYYY Yy
D 13 | word relative
deferred @W"address YYYYY y
E 14 longword relative L"address YYYYY Yy
F 15 longword relative
deferred @L"address |y yyvyy y
D -- displacement
i == any indexable addressing mode
- - logically impossible
f -- reserved addressing mode fault
p -- Program Counter addressing
u -- Unpredictable
up == Unpredictable for quad and double (and field if position +
size greater than 32)
ux -- Unpredictable for index register same as base register
y -- yes, always valid addressing mode
r -- read access
m -- modify access
W - write access
a - address access
vV -- field access
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1.5.2.1.2 Register Deferred Mode -- Register deferred mode
provides one level of indirect addressing over register mode; that
" is, the general register contains the address of the operand
rather than the operand itself. The deferred modes are useful when
dealing with an operand whose address is calculated.

07 04 03 00

TK-1178

Figure 1-17 Operand Specifier Format in Register Deferred Mode

1.5.2.1.3 Autoincrement Mode ~-- In . autoincrement mode
addressing, the contents of Rn contain the address of the operand.
After the operand address is determined, the size of the operand
(which is determined by the instruction) in bytes (1 for byte, 2
for word, 4 for longword or floating and 8 for quadword or double
floating) is added to the contents of register Rn and the contents
of Rn are replaced by the result. This mode provides for automatic
stepping of a pointer through sequential elements of a table of
operands. It assumes the contents of the selected general register
to be the address of the operand. Contents of registers are
incremented to address the next sequential 1location. The
autoincrement mode is especially useful for array processing and
stacks. It will access an element of a table and then step the
pointer to address the next operand in the table. Although most
useful for table handling, this mode is completely general and may
be used for a variety of purposes.

07 04 03
8 I RN

TK-1179

Figure 1-18 Operand Specifier Format in Autoincrement Mode
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1.5.2.1.4 Autoincrement Deferred Mode -- In autoincrement
deferred addressing, register Rn contains a longword address which
is a pointer to the operand address. After the operand address has
been determined, 4 is added to the contents of register Rn and the
content of register Rn is replaced with the result. The quantity 4
is used since there are 4 bytes in an address.

07 04 03 00

TK-1180

Figure 1-19 Operand Specifier Format in
Autoincrement Deferred Mode

1.5.2.1.5 Autodecrement Mode =-- In autodecrement mode, the size
of the operand in bytes (1l for byte, 2 for word, 4 for longword or
. floating and 8 for quadword or double) is subtracted from the
contents of register Rn and the contents of register Rn are
replaced by the result. The updated contents of register Rn are
the address of the operand. The contents of the selected general
register are decremented and then used as the address of the
operand. -

07 04 03 00

: "N

TK-1181

Figure 1-20 Operand Specifier Format in Autodecrement Mode

1.5.2.1.6 Displacement Mode -- In displacement mode addressing,
the displacement (after being sign extended to 32 bits if it is a
byte or word) is added to the contents of register Rn and the
result is the operand address. This mode is the equivalent of
index mode in the PDP-11 addressing.

The VAX-11 architecture provides for an 8-bit, 16-bit or 32-bit
offset. Since most program references occur within small discrete
portions of the address space, a 32-bit offset is not always
necessary and the 8- and 16-bit offsets will result in substantial
saving of space (that is, fewer bits are required).
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15 0807 04 00

BYTE
DISPLACEMENT A RN | DISPLACEMENT
23 ' 0807 0403 41
WORD
[- DISPLACEMENT c RN IpISPLACEMENT
2 0807 0403 _ ﬁ
'ﬂ]‘ LONGWORD
DISPLACEMENT E RN | T

TK-1183

Figure 1-21 Operand Specifier Format in Displacement Mode

1.5.2.1.7 Displacement Deferred Mode -- In displacement deferred
- mode addressing, the displacement (after being sign-extended to 32
bits if it is a byte or word) is added to the contents of the
selected general register and the result is a longword address of
the operand address.

1
5 0807 04 03 BYTE
DISPLACEMENT B RN | DISPLACEMENT
—I DEFERRED
3 . 08 07 00 WORD
DISPLACEMENT D RN DISPLACEMENT
) DEFERRED
0807 04 03
< < 2 LONGWORD
I- DISPLACEMENT F RN DISPLACEMENT
! DEFERRED

TK-1184

Figure 1-22 Operand Specifier Format in
Displacement Mode
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1.5.2.1.8 Index Mode -- In index mode, the operand specifie:
consists of at least two bytes--primary operand specifier and :
base operand specifier. The primary operand specifier contained ir
bits @ through 7 includes the index register (Rx) and a mode
specifier of 4. The address of the primary operand is determinec
by first multiplying the contents of index register Rx by the siz:
of the primary operand in bytes (1 for byte, 2 for word, 4 fo:
longword or floating, and 8 for quadword or double). This value i:
then added to the address specified by the base operand specifie:
(bits 15-8), and the result is taken as the operand address.

PRIMARY OPERAND

™ e

r N
________ 15 08 07 0403 00

L DISPLACEMENT BASE OPERAND SPECIFIER 4 RX
T TK-1192

Figure 1-23 Operand Specifier Format in Index Mode

The chief advantage of index mode addressing is to provide very
general and efficient accessing of arrays. The VAX-1ll architecture
provides for context indexing whereby the number in the inde:
register is shifted left by the context of the data type specifiec
(once for byte, twice for word, three times for longword, four
times for quadword). This allows loop control variables to be usec
in the address calculation without first shifting them the

appropriate number of times, thus minimizing the number .of
instructions required.

The following restrictions are placed on the index register (Rx):

a. The PC cannot be used as an index register. If the PC is
used, a reserved addressing mode fault occurs.

b. If the base operand specifier uses an addressing mode
which results in register modification (autoincrement,
autoincrement deferred, or autodecrement), the same
register cannot be the index register. If it is, the
primary operand address is unpredictable.




Table 1-4 lists the various forms of index mode addressing. The
name of the addressing mode results from the addressing mode of
the base operand specifier. Specifying register, literal, or index
mode for the base operand specifier will result in an illegal
addressing mode fault. The general register is designated Rn and
the indexed register is Rx.

Table 1-4 Index Mode Addressing

MODE ASSEMBLER NOTATION

Register deferred index (Rn) [Rx]

Autoincrement indexed (Rn) + [Rx] _
Immediate indexed ‘ I$4 constant [Rx] which is

recognized by assembler but is
not generally useful. Operand
address is independent of value
of constant.

Autoincrement deferred indexed €(Rn) + [Rx]
Absolute indexed @#address [Rx]
Autodecrement indexed - (Rn) [Rx]
Byte, word or longword ' B°D (Rn) [Rx]
displacement indexed W D(Rn) [Rx]
L°D (Rn) [Rx]
Byte, word or longword @B"D (Rn) [Rx]
displacement deferred indexed eW"D (Rn) [Rx]

€L "D (Rn) [Rx]

1.5.2.1.9 Literal Mode =-- Literal mode provides an efficient
means of specifying integer constants in the range of @ to 63
(decimal). Values in the range of @ to 63 are called short
literals. Values above 63 (long literals) can be obtained using
immediate mode (autoincrement mode using PC). The format of the
operand specifier is shown in Figure 1-24. The .value of the mode
specifier (bits 07:04) is 0, 1, 2, or 3, and depends on the value
of the short literal (bits ©05:00). Bits @7 and 066 of the mode
specifier are always zero.
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MODE SPECIFIER
r ~ =

07 06 05 04 03 02 01 00

%1 4y

MODE SPECIFIER =0
r o= ™

07 _06 05 04 03 02 01 00

010 olol ] ] 1

MODE SPECIFIER = 1

4 Y
07 06 05 04 03 02 01 00
c,0f0, v, , ,

MODE SPECIFIER = 2
r = N\

07 _06 05 04 03 02 01 00

OIO 'lol ] | ]

MODE SPECIFIER = 3

4 N

0706050403‘020100

o,o0 (v, v, , |,

TK-1193

Figure 1-24 Operand Specifiet Formats in Literal Mode

1-36




Literal mode can also be used to express floating point values
(listed in Table 1-5). For floating point operands, the 6-bit

literal is composed of a 3-bit exponent (EXP) field and a 3-bit
fraction (FRAC) field. Refer to Figure 1-25,

5 03 02 00
EXP FRAC

TK-1191

Figure 1-25 Floating Literal Format

The 3-bit EXP field and 3-bit FRAC field are used to form floating
or double operands as showr in Figure 1-26. Note that bits 63:32
are not present in single-precision floating point operands.

EXP FRAC

r s Y ~ N
15 14 13 12 11 _10 09 7 06 05 04 03 - 00
0 1 0 0 0 0 g 0 -
0 : -
e 0 "
- 0 —
63 48
TK-1194

Figure 1-26 Literal Fields in Floating/Double Floating Operands

Table 1-5 1lists the possible floating 1literals that can be
expressed in the operand specifier.
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Table 1-5 Floating Literals

FRAC

EXP | @ 1 2 3 4 5 6 7

) 1/2 9/16 5/8 11/16 3/4 13716 | 7/8 15/16
1 1 11/8 1 1/4 1l 3/8 11/2 1 5/8 1 3/4 1 7/8
2 2 ‘2174 | 2172 | 2 3/4 3 3174 | 3172 | 3 3/4
3 4 4 172 5 5 1/2 6 6 1/2 7 7 1/2
4 8 9 10 11 12 13 14 15

5 16 18 20 22 24 26 28 38

6 32 36 40 44 48 52 56 60

7 64 72 8o 88 96 104 112 120
1.5.2.2 Program Counter Addressing -- The program counter

addressing modes use the PC (R15) as the general register in the
operand specifier. Since the program counter is incremented as the
instruction is evaluated, the addressing modes have special
significance when the PC is used. The PC can be used with all of
the general register addressing modes except register or. index
mode. Refer to Table 1-3 for a 1list of to program counter
addressing modes and associated assembler notation. The following
paragraphs provide a brief description of .each program counter
addressing mode and the associated operand specifier format.

1.5.2.2.1 Immediate Mode -- Immediate mode is autoincrement
mode with the PC as the general register. The operand constant is
contained in the location immediately following the operand
specifier. '

07 04 03 00
CONSTANT 8 F
SIZE DEPENDS
ON CONTEXT
TK-1198

Figure 1-27 Operand Specifier Format in Immediate Mode

1.5.2.2.2 Absolute Mode -- Absolute mode is autoincrement
deferred mode with the PC as the general register. The contents of
the 1location following the operand specifier are taken as the
operand address. This is interpreted as an absolute address (i.e.,
an address that remains constant regardless of where in memory the
assembled instruction is executed).
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ADDRESS , 9 F

TK-1196

Figure 1-28 Operand Specifier Format in Absolute Mode

1.5.2.2.3 Relative Mode -- Relative mode is displacement mode
with the PC as the general register. The displacement which
follows the operand specifier is added to the PC and the result is
the address of the operand. This mode is useful for writing
position independent code since the location referenced is always

fixed relative to the PC.
. -

15 08 07 04 03 00

~ BYTE
DISPLACEMENT A F DISPLACEMENT
23 07 04 03 00 .
DISPLACEMENT c F ggg&csmsm
a9 08 07 04 03 4;}‘
l LONGWORD
r ) DISPLACEMENT E F DISPLACEMENT

TK-1197

Figure 1-29 Operand Specifier Format in Relative Mode

1-39




1.5.2.2.4 Relative Deferred Mode -- Relative deferred mode is
displacement deferred mode with the PC as the general register.
The displacement which follows the operand specifier is added to
the PC and the result is a longword address of the address of the
operand. This addressing mode is useful when processing tables of

addresses.

15 08 07 03 BYTE
DISPLACEMENT | B F  |DISPLACEMENT

DEFERRED

04 03

07
DISPLACEMENT

D

F

20 WORD
DISPLACEMENT
DEFERRED

04 03

00

. A 0807
DISPLACEMENT

F

——1LONGWORD
DISPLACEMENT
DEFERRED

TK-1198

Figure 1-3¢ Operand Specifier Format in Relative Deferred Mode
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1.6 NATIVE MODE INSTRUCTION SET

The VAX-11/780 processor is capable of executing instructions in
either of two modes, native (VAX-1l) or compatibility (PDP-11).
The primary mode of instruction execution is native mode. The
variable-length native mode instructions are based on over 200
op codes listed in Appendix A. The following paragraphs provide a
brief description of each class of instructions.

l1.6.1 Integer and Floating Point Instructions

The logical and arithmetic instructions operate on all available
data types. Most of the operations provided for integer data are
also provided for floating point and packed decimal data.
Exceptions are the strictly logical operations for integer data
(e.g., bit clear, bit set, complement), the multiword arithmetic
instructions for integer data (e.g., Add/Subtract with Carry,
Extended Multiply, and Extended Divide), and the Extended Modules
and Polynomial instructions for floating point data. :

The arithmetic instructions include both 2-operand and 3-operand
forms that eliminate the need to move data to and from temporary
operands. The 2-operand instructions store the result in one of
the two operands, as in "Set A equal to A plus B." The 3-operand
instructions effectively implement the high-level language
statements in which two different variables are used to calculate
a third, such as "Set C equal to A plus B." The 3-operand
instructions are applicable to both integer and floating point
data, and equivalent instructions exist for packed decimal data.

Some of the arithmetic instructions are used for extending the
accuracy of repeated computations. The Extended Multiply (EMUL)
jnstruction takes longword integer arguments ‘and produces a
quadword result. The instruction effectively implements a
high-level language statement such as "Set D equal to (A times B)
plus C." The Extended Divide (EDIV) instruction divides a quadword
integer by a longword and produces a longword quotient and a
longword remainder.

The Extended Modulus (EMOD) instructions multiply a floating point
number with an extended precision floating point number (extended
by eight bits for an effective 9 or 19 digits of accuracy) and
return the integer portion and the fractional portion separately.
This instruction is particularly useful for preserving the
precision of input throughout trigonometic and exponential
function evaluation.

The Polynomial Evaluation (POLY) instructions evaluate a
polynomial from a table of coefficients using Horner's method.
This instruction is used extensively in the high-level languages'
math library for operations such as sine and cosine.

The following lists the integer and floating point instructions.
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Integer and Floating Point Logical Instructions

MOV _ Move (B, W, L, F, D, Q)*

MNEG Move Negated (B, W, L, F, D)
MCOM_ Move Complemented (B, W, L)

MOVZ Move Zero-Extended (BW, BL, WL)
CLR_— Clear (B, W, L, F, Q, D)

CVTR L Convert Rounded (F, D) to Longword
CMP_ Compare (B, W, L, F, D)

TST_ Test (B, W, L, F, D)

BIS_2 Bit Set (B, W, L) 2-Operand
BIS_3 Bit Set (B, W, L) 3-Operand
BIC_2 Bit Clear (B, W, L) 2-Operand
BIC 3 Bit Clear (B, W, L) 3-Operand
BIT_ Bit Test (B, W, L)

XOR_2 Exclusive OR (B, W, L) 2-Operand
XOR_3 Exclusive OR (B, W, L) 3-Operand

Integer and Floating Point Arithmetic Instructions

INC_ Increment (B, W, L)

DEC _ Decrement (B, W, L)

ASH_ Arithmetic shift (L, Q)

ADD_3 Add (B, W, L, F, D) 3-Operand
ADWC Add with Carry

ADAWI Add Aligned Word Interlocked

SUB_2 Subtract (B, W, L, F, D) 2-Operand
SuB_3 Subtract (B, W, L, F, D) 3-Operand
SBWC Subtract with Carry :
MUL_2 Multiply (B, W, L, F, D) 2-Operand
EMUT Extended Multiply

DIV 2 Divide (B, W, L, F, D) 2-Operand
DIV 3 Divide (B, W, L, F, D) 3-Operand
EDIV Extended Divide

EMOD_ Extended Modulus (F, D)

POLY _ Polynomial Evaluation (F, D)

*B = byte, W = word, L = longword, F = floating, D = double
floating, Q = quadword.

1.6.2 Character String Instructions
The character string instructions operate on strings of bytes.
They include:

move string instructions, with translation options
string compare instructions

single character search instructions

substring search instructions
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There are two basic forms of Move instructions for character
strings. The Move Character instructions (MOVC3 and MOVCS) simply
copy character strings from ‘one location to another. They are
optimized for block transfer operations.

The Move Translated Characters (MOVTC) and Move Translated Until
Character (MOVTUC) instructions actually create new character
strings. A string is supplied which the instruction uses as a list
of offsets into a translation table. The instruction selects
characters from the table in the order that the offset list points
to the table. The MOVTC instruction allows a fill character to be
supplied that the instruction uses to pad out the resultant string
to a given size with an arbitrary character. The MOVTUC
instruction allows any number of escape characters to be supplied.
When the next offset points to an escape character in the table,
translation stops.

The Compare Characters (CMPC) instructions provide character-by-
character byte string compares. CMPC has a 3-operand form and a
S5-operand form. Both instructions compare two strings from
beginning to end and acknowledge that it reached the first
character that is different between the strings, or when it gets
to the end of either string. The S5-operand variation enables a
£fill character to be supplied which it uses to effectively pad out
a string when comparing it with a longer one.

The Locate Character (LOCC) and Skip Character (SKPC) instructions
are search instructions for single characters within a string.
LOCC searches a given string for a character that matches the
search character supplied. This is wuseful, for example, when
searching for the delimiter at the end of a variable-length
string. SKPC, on the other hand, finds the first character in the
string that is different from the search character supplied. This
is useful for skipping through £ill characters at the end of a
field to find the beginning of the next field.

The Match Characters (MATCHC) instruction is similar to the Locate
Character instruction, but it 1locates multiple-character
substrings. MATCHC searched a string for the first occurrence of a
substring supplied. .

The Span characters (SPANC) -and Scan Characters (SCANC)
instructions are search instructions that 1look for members of
character classes. For these instructions the following are
supplied: a character string, a mask, and the address of a
256-byte table of character type definitions. For each character
in the given string, the instruction looks up the type code in the
table for that character, and then AND's the given mask with the
character's type code. SPANC finds the first character in the
string which is of the type indicated by its mask. SCANC finds the
first character in the string which is of any type other the one
indicated by its mask.
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The character string instructions are listed as follows:

MOVC 3
MOVCS
MOVTC
MOVTUC
CMPC3
CMPC5

LOoCC
SKPC
SCANC
SPANC
MATCHC

l1.6.3
Many of
apply to

Move Character 3-Operand
Move Character 5-Operand
Move Translated Characters
Move Translated Until Character
Compare Characters 3-Operand
Compare Characters 5-Operand
Locate Character

Skip Character

Scan Characters

Span Characters

Match Characters

Packed Decimal Instructions
the operations for integer and floating point data also
packed decimal strings. They include:

Move Packed (MOVP) for copying a packed decimal string
from one location to another, and Arithmetic Shift Packed
(ASHP) for scaling a packed decimal up or down by a
given power of 10 while moving it, and optionally
rounding the value.

Compare Packed (CMPP) for comparing two packed decimal

- strings. Compare packed has two vairations: a 3-operand

(CMPP3) instructions for strings of equal length, and a
4-operand instruction (CMPP4) for strings of differing
lengths.

Convert Instructions, including Convert Long to Packed
(CVTLP). Convert Packed to Long (CVTPL), Convert Packed
to numeric with Trailing sign (CVTPT), Convert numeric
with Trailing sign to Packed (CVTTP), Convert Packed to
numeric with Separate overpunched sign (CVTPS), and
Convert numeric with Separate overpunched sign to Packed
(CVTSP). These instructions enable conversion of packed
decimal format to commonly used numeric formats. Numeric
with trailing sign allows various sign encodings
including zoned and overpunched.

Add Packed (ADDP) and Subtract Packed (SUBP) for adding
or subtracting two packed decimal strings, with the
option of replacing the addend or subtrahend with the
result (ADDP4 and SUBP4), or storing the result in a
third string (ADDP6 or SUBP6).

Multiply Packed (MULP) and Divide Packed (DIVP) for
multiplying or dividing two packed decimal strings and
storing the result in a third string.

In addition, the packed decimal instructions include a special
packed decimal string to character string conversion instruction
that provides output formatting: the Edit instruction.
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The Edit Packed to Character String (EDITPC) instruction supplies
formatted numeric output functions. The instruction converts a
given packed decimal string to a character string using selected
pattern operators. The pattern operators enable creation of
numeric output fields with any of the following characteristics:

leading zero fill

leading zero protection

leading asterisk £ill protection
a floating sign

a floating currency symbol
special sign representations
insertion characters

blank when zero

The packed decimal instructions are listed as follows:

MOVP Move Packed

CMPP3 Compare Packed 3-Operand

CMPP4 Compare Packed 4-Operand

ASHP Arithmetic Shift Packed and Round
ADDP4 Add Packed 4-Operand

ADDP6 - Add Packed 6-Operand

SUBP4 Subtract Packed 4-Operand

SUBP6 Subtract Packed 6-Operand

MULP Multiply Packed

DIVP Divide Packed

CVTLP Convert Long to Packed

CVTPL Convert Packed to Long

CVTPT Convert Packed to Trailing
CVTTP Convert Trailing to Packed
CVTPS Convert Packed to Separate
CVTSP Convert Separate to Packed
EDITPC Edit Packed to Character String
1.6.4 Index Instruction

The Index instruction (INDEX) calculates an index for an array of
fixed length data types (integer and floating) and for arrays of
bit fields, character strings, and decimal strings. It accepts as
arguments: a subscript, lower and upper subscript bounds, an array
element size, a given index, and a destination for the calculated
index. It incorporates range checking within the calculation for
high-level languages using subscript bounds, and it allows index
calculation optimization by removing invarient expressions.
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1.6.5 Variable-Length Bit Field Instructions

The bit field instructions enable the definition, access, and
modification of fields whose size and location can be specified.
The location is determined from a base address or from a register
and signed bit offseylef the field is in memory, the offset range
can be as large as 27 °-1 (approximately 16 million bytes). If the
field is in a register, the offset can be as large as 31. Fields
of arbitrary lengths (@ to 32 bits) can be used to store data
structure header information compactly or for storing status
codes.

The Insert Field and Extract Field instructions store data and
retrieve data from fields. Insert Field (INSV) stores data in a
field by taking a specified number of bits of a longword (starting
from the low-order bit) and writing them into a field, which may
start at any bit relative to a given base address. The field can
either be signed (EXTV) or unsigned (EXTZV).

The Compare Field and Find First instructions enable the contents
of a field to be tested. Compare Field extracts a field and then
compares it with a given longword. The field can be interpreted as
signed (CMPV), or as unsigned (CMPZV). The Find First instructions
locate the first bit in a field that is clear (FFC) or set (FFS),
- scanning from low-order bit to high-order bit. These instructions
are particularly useful for scanning a status control 1longword.
For example, the longword may represent a set of queues processed
in order by priority @ (high) to 31 (low). Each set bit represents
an active queue. The Find First Set instruction quickly returns
the highest priority queue that is active. Together with the SKPC
instructions, the Find First instructions are also useful for
scanning an allocation table (bit map) of arbitrary length.

The variable-length bit field instructions are listed as follows:

EXTV Extract Field

EXTZV Extract Zero-Extended Field
INSV Insert Field

CMPV Compare Field

CMPZV ~ Compare Zero-Extended Field
FFS Find First Set

FFC Find First Clear

1.6.6 Queue Instructions

Two instructions are provided that enable construction and
maintenance of queue data structures. Queues manipulated using the
queue instructions are circular, doubly 1linked 1lists of data
items.

The first longword of a queue entry contains the forward pointer
to the next entry in the queue, and the next longword contains the
backware pointer to the preceding entry in the queue. One queue
entry is arbitrarily treated as the head of the queue. Since a
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list is circular, the tail of a queue is the entry that points to
the head of the queue. In practice, the first entry of a queue is
a "permanently allocated"” listhead containing only the pointers to
the first and last elements.

The INSQUE instruction inserts entries into queues. If an entry is
the first item in a queue, INSQUE effectively creates a queue. The
_REMQUE instruction removes entries from a queue, and effectively
deletes a queue if an entry is the last item removed. Entries can
be inserted or removed at the head or tail of a queue, or anywhere
in between.

Cooperating processes can access a queue at the same time without
external synchronization. However, "if more than one process is
allowed to access a given queue at the same time, each process
should insert or remove entries only at the head or tail of the
queue. If only one process at a time accesses a queue, entries can
be inserted or removed anywhere in the queue.

1.6.7

Address Manipulhtion Instructions

Two instructions are provided that enable an address to be fetched
without actually accessing the data at that location:

1.6.8

The Move Address (MOVA) instruction which stores the
address' of a byte, word, longword (and floating), or
quadword (and double floating) datum in a specified
register or memory location. -

The Push Address (PUSHA) instructions which store the
address of a byte, word, longword (and floating) or
quadword (and double floating) datum on the stack..

General Register Manipulation Instructions

The general register manipulation instructions enable any user
program to save or load the general purpose registers in one
operation, examine the Processor Status Longword, and set or clear
status bits in the Processor Status Word.

The Push Longword (PUSHL) instruction pushes a longword on the
stack. This instruction is the same as a Move Longword using the
Stack Pointer in register deferred mode, but is a byte shorter. It
is a consistent and convenient way to move data to the stack.

The Push Registers (PUSHR) instruction pushes a set of registers.
on the stack in one operation. A mask word is supplied in which
each bit set (8-14) represents a register (R@ through R14) that is
to be saved on the stack. The only general register that cannot be
saved using this instruction is R15, the Program Counter. Pop
Registers (POPR) reverse the operation, loading each register from
successive longwords on the stack according to the given mask
word. The PUSHR and POPR instructions replace the need to write a
sequence of Move instructions to save and restore registers upon
entry and exit from a subroutine.
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The Move from Processor Status Longword (MOVPSL) instruction
allows examination of the contents of the processor's status
register by loading its contents into a specified location. The
Bit Set (BISPSW) and Bit Clear (BICPSW) Processor Status Word
instructions allow the setting or clearing of the PSW condition
codes and trap enable bits.

The general register manipulation instructions are 1listed as
follows:

PUSHL : Push Longword on Stack

PUSHR Push Registers on Stack

POPR Pop Registers from Stack

MOVPSL Move from Processor Status Longword
BISPSW -Bit Set Processor Status Word
BICPSW Bit Clear Processor Status Word
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1.6.9 Branch, Jump, and Case Instructions

The two basic types of control transfer instructions are the
branch and jump instructions, both of which load new addresses in
the Program Counter. In branch instructions, a displacement
(offset) is supplied and added to the current Program Counter to
obtain the new address. In jump instructions, the new address is
loaded into the Program Counter using one of the normal addressing
modes.

A number of branch instructions are offered since most transfers
are to locations relatively close to the current instruction and
branch instructions are more efficient than jump instructions.
There are two unconditional branch instructions and several
conditional branch instructions.

The unconditional branch instructions allow byte (BRB) or word
(BRW) displacements to be specified. This allows branching to
locations a maximum of 32,767 bytes in either direction from the
current location. For control transfers to locations farther away,
the Jump (JMP) instruction can be used.

The condition branch instructions include:
a. branch on bit instructions

b. set and clear bit instructions with a branch if it is
already set or cleared )

Ce. loop instructions that increment or decrement a counter,
compare it with a limit value, and branch on a relational
condition

d. computed branch instruction in which a branch may take
place to one of several locations depending on a computed
value

The branch or condition instructions enable transfer of control to
another location depending on the status of one or more of the
condition codes in the Processor Status Word (PSW). There are
three groups of Branch on Condition instructions:

a. the signed relational branches, which are used to test
the outcome of instructions operating on integer and
field data types being treated as signed integers,
floating point data types, and decimal strings

b. the unsigned relational branches, which are used to test
the outcome of instructions operating on integer and

field data types being treated as unsigned integers,
character strings, and addresses
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C. the overflow and carry test branches, which are used for
checking overflow when traps are not enabled, for
multiprecision arithmetic, and for the results of special
instructions

The instruction mnemonics indicate the choice between a signed and
unsigned integer data type interpretation for relational testing.
The relational tests determine if the result of the previous
operation is 1less than, less than or equal, equal, not equal,
greater than or equal, or greater than 2zero. For example, the
Branch on Less than or Equal Unsigned (BLEQU) instruction branches
if either the Carry or Zero bit is set. The Branch on Greater Than
(BGTR) instruction branches if neither the Negative nor the Zero
bit is set.

There are also general purpose Branch on Bit instructions similar
to Branch on Condition. The Branch on Low Bit Set (BLBS) and
Branch on Low Bit Clear (BLBC) instructions test bit @ of an
operand, which is useful for testing Boolean values. The Branch on
Bit Set (BBS) and Branch on Bit Clear (BBC) instructions test any
selected bit.

There are special kinds of Branch on Bit instructions that are
actually bit set/clear instructions. The Branch on Bit Set and Set
(BBSS) is an exampie. The instruction branches if the indicated
bit is set, otherwise it falls through. In either case, the
instruction sets the given bit. The BBSS instruction can thus be
thought of as a Bit Set instruction with a branch side effect if
the bit was already set. There are four such instructions:

a. Branch on Bit Set and Set (BBSS)

b. Branch on Bit Clear and Clear (BBCC)
. Branch on Bit Set and Clear (BBSC)

d. Branch on Bit Clear and Set (BBCS)

These instructions are particularly useful for keeping track of
procedure completion or initialization, and for signaling the
completion or initialization of a procedure to a cooperating
process. In addition, there are two Branch on Bit Interlocked
instructions that provide control variable protection: . '

a. Branch on Bit Set and Set Interlocked (BBSSI)
b. Branch on Bit Clear and Clear Interlocked (BBCCI)

The SBI bus provides a memory interlock on these instructions. No
other BBSSI or BBCCI operation can interrupt these instructions to
gain access to the byte containing the control variable between
the testing of the bit and the setting or clearing of the bit.

Three types of branch instructions can be used to write efficient
loops. The first type provides a basic subtract-one-and-branch
loop. A counter variable .is supplied which is decremented each
time the loop is executed. In the Subtract One and Branch Greater
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Than (SOBGTR) instruction, the loop repeats until the counter
equals zero. In the Subtract One and Branch Greater Than or Equal
(SOBGEQ) instruction, the loop repeats until the counter becomes

negative.

The counterpart to subtract-one-and-branch is add-one-and-branch.
In this case, a counter and a limit are incremented at the end of
the loop. In the Add One and Branch Less Than (AOBLSS)
instruction, the loop repeats until the counter equals the limit
set. In the Add One and Branch Less Than or Equal (AOBLEQ)
instruction, the loop repeats until the counter exceeds the limit
set. : .

The third type of loop instruction efficiently implements the
FORTRAN language DO statement and the BASIC 1language FOR
statement: Add Compare and Branch (ACB). A limit, a counter, and a
step value are supplied. For each execution of the loop, the
instruction adds the step value to the counter and compares the
counter to the limit. The sign of the step value determines the
logical relation of the comparison: the instruction 1loops on a
less than or equal comparison if the step value is positive, on a
greater than or equal comparison if the step value is negative.

The processor provides a branch instruction that implements
higher-level 1language computed GO TO statements: the CASE
instruction. For CASE, a list of displacements are supplied that
generate different branch addresses indexed by the value obtained
as a selector. The branch falls through if the selector does not
fall within the limits of the 1list.

The branch, jump, and case instructions are listed as follows:
Unconditional Branch and Jump Instructions

BR_ Branch with (Byte, Word) Displacement
‘IJMP Jump

Branch on Condition Code

BLSS Less Than

BLSSU Less than Unsigned

BLEQ Less than or Equal

BLEQU Less than or Equal Unsigned
BEQL Equal :

BEQLU Equal Unsigned

BNEQ Not Equal

BNEQU Not Equal Unsigned

BGTR Greater than

BGTRU Greater than Unsigned

BGEQ Greater than or Equal
BGEQU Greater than or Equal Unsigned
BCC Carry Cleared

BVS Overflow Set

BVC Overflow Clear
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Branch on Bit

BLB_ Branch on Low Bit (Set, Clear)

BB Branch on Bit (Set, Clear)

BBS _ Branch on Bit Set and (Set, Clear) bit

BBC Branch on Bit Clear and (Set, Clear) bit
BBSSI Branch on Bit Set and Set bit Interlocked
BBCCI Branch on Bit Clear and Clear bit Interlocked

Loop and Case Branch

ACB_ Add, Compare and Branch (B, W, L, F, D)
AOBLEQ Add One and Branch Less Than or Equal

AOBLSS Add One and Branch Less Than

SOBGEQ Subtract One and Branch Greater Than or Equal
SOBGTR Subtract One and Branch Greater Than

CASE Case on (B, W, L) :

1.6.10 Subroutine Branch, Jump, and Return Instructions

Two special types of branch and jump instruction are provided for
calling subroutines: the Branch to Subroutine (BSB) and Jump to
Subroutine (JSB) instructions. Both BSB and JSB instructions save
the contents of the Program Counter on the stack before loading
the Program Counter with the new address. With Branch to
Subroutine, either a byte (BSBB) or word (BSBW) displacement are
supplied. With Jump to Subroutine, regular addressing is used.

The subroutine call instructions are complemented by the Return
from Subroutine (RSB) instruction. RSB pops the first longword off
the stack and loads it into the Program Counter. Since the Branch
to Subroutine instruction is either two or three bytes long, and
the Return from Subroutine instruction is one byte long, it is
possible to write extremely efficient programs using subroutines.

l1.6.11 Procedure Call and Return Instructions

Procedures are general purpose routines that use argument 1lists
passed automatically by the processor. The procedure Call
instructions enable language processors and the operating system
to provide a standard calling interface. They: :

a. save all the registers that the procedures use, and only
those registers, before entering the procedure

b. pass an argument list to a procedure
C. maintain the Stack, Frame, and Argument Pointer registers
d. initialize the arithmetic trap enables to a given state

When a Call procedure instruction is iésued, the address of the
procedure is supplied.
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The first word of a procedure contains an entry mask that is used
in the same way as the entry mask defined for the Push Registers
instruction. Each set bit of the 12 low-order bits in the word
represents one of the general register, R@ through R1ll, that the
procedure uses. The Call instruction examines this word and saves
the indicated registers on the stack. In addition, the Call
instruction also automatically saves the contents of the Frame
Pointer, Argument Pointer, and Program counter registers. This is
an extremely efficient way to ensure that registers are saved
across procedure calls. No general register is saved that does not .
have to be saved.

The Call Procedure with General Argument List (CALLG) instruction
accepts the address of an argument list and passes the address to
the procedure in the Argument Pointer register. The Call Procedure
with Stack Argument List (CALLS) passes the argument list, if any,
which you have placed on the stack, by 1loading the Argument
Pointer register with its stack address.

When a procedure completes execution, it issues the Return from
Procedure Instruction (RET). Return uses the Frame Pointer
register to find the saved registers that it restores, and to
clean up any data left on the stack, including nested routine
linkages. A procedure can return values using the argument list or
other registers.

1.6.12 Miscellaneous Special Purpose Instructions _
Native mode includes a number of special purpose instructions,
including: ' .

a. Cyclic Redundancy Check (CRC)
b. Breakpoint Fault (BPT)

c. Extended Function Call (XFC)
d. No Operation (NOP)

e. Halt

The Cyclic Redundancy Check (CRC) instruction calculates a cyclic
redundancy check for a given string using any CRC polynomial up to
32 bits long. The operating system library includes tables for.
standard CRC functions, such as CRC-16.

The Breakpoint Fault (BPT) instruction makes the processor execute
the kernel mode condition handler associated with the Breakpoint
Fault exception vector. BPT is used by the operating system
debugging utilities but can also be used by any process that sets
up a Breakpoint Fault condition handler.

The Extended Function Call (XFC) instruction allows escapes to
customer-defined instructions in writable control store. The NOP
instruction is useful for debugging. The HALT instruction is a
privileged instruction issued only by the operating system to halt
the processor when bringing the system down by operator request.
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1.6.13 Protected and Privileged Instructions

The processor provides three types of instructions that enable
user mode software to obtain operating system services without
jeopardizing the integrity of the system. They include:

a. the Change Mode instructions
b. the PROBE instructions
c. the Return from Exception or Interrupt instruction

User mode software can obtain privileged services by calling
operating system service procedures with a standard CALL
instruction. The operating system's service dispatcher issues an
appropriate Change Mode instruction before actually entering the
procedure. Change Mode allows access mode transitions to take
place from one mode to the same or more privileged mode only. When
the mode transition takes place the previous mode is saved in the
Previous Mode field of the Processor Status Longword, allowing the
more privileged code to determine the privilege of its caller.

A Change Mode instruction is simply a special trap instruction
that can be thought of as an operating system service call
instruction. User mode software can explicitly issue Change Mode
instructions, but since the operating system receives the trap,
non-privileged users can not write any code to execute in any of
the privileged access modes. User mode software can include a
condition handler for Change Mode to User traps, however, and this
instruction is useful for providing general purpose services for
user mode software. The system manager ultimately grants the
privilege to write any code that handles Change Mode traps to more
privileged access modes.

For service procedures written to execute in privileged access
modes (kernel, executive, and supervisor), the processor provides
address access privilege validation instructions. The PROBE
instructions enable a procedure to check the read (PROBER) and
write (PROBEW) access protection of pages in memory against the
privileges of the caller who requested to access a particular
location. This enables the operating system to provide services
that execute in privileged modes to less privileged callers and
still prevent the caller from accessing protected areas of memory.'

The operating system's privileged service procedures and interrupt
and exception service routines exit using the Return from
Exception or Interrupt (REI) instruction. REI is the only way in
which the privilege of the processor's access mode can be
decreased. Like the procedure and subroutine return instructions,
REI restores the Program Counter and the processor state to resume
the process at the point where it was interrupted.




REI performs special services, however, that normal return
instructions do not. For example, REI checks to see if any
asynchronous system traps have been queued for the currently
executing process while the interrupt or exception service routine
was executing, and ensures that the process will receive them.
Furthermore, REI checks to ensure that the mode to which it is
returning control is the same as or less privileged than the mode
in which the processor was executing when the exception or
interrupt occurred. Thus REI is available to all software
including user-written trap handling routines, but a program can
not increase its privilege by altering the processor state to be
restored.

When the operating system schedules a context switching operation,
the context switching procedure uses the Save Process Context
(SVPCTX) and Load Process Context (LDPCTX) instructions to save
the current process context and load another. The operating
system's context switching procedure identifies the 1location of
the hardware context to be loaded by updating an internal
processor register.

Internal processor registers not only include those that identify
the process currently executing, but also the memory management
and other registers, such as the console and clock control
registers. The Move to Processor Register (MTPR) and Move from
Processor Register (MFPR) instructions are the only instructions
that can explicitly access the internal processor register. MTPR
and MFPR are privileged instructions that can be issued only in
kernel mode. Table 1-6 provides a complete list of the processor
registers.

The protected and privileged instructions are listed as follows:

Protected Procedure Call and Return Instructions

CHM_ Change Mode to (Kernel, Executive, Supervisor,
User)

REI : Return .from Exception or Interrupt

PROBER Probe Read

PROBEW Probe Write

Privileged Processor Register Control Instructions

SVPCTX Save Process Context

LDPCTX Load Process Context

MTPR Move to Process Register
MFPR Move from Processor Register
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Table 1-6 Processor Registers

Register Name Mnemonic Number (Hex)
Kernel Stack Pointer KSP 00
Executive Stack Pointer ESP g1
Supervisor Stack Pointer SSP g2
User Stack Pointer usp " ]
Interrupt Stack Pointer ISP 04
PO Base Register P@BR g8
P@ Length Register POLR 29
Pl Base Register P1BR 2a
Pl Length Register P1LR 2B
System Base Register SBR ac
System Limit Register SLR oD
Process Control Block Base PCBB 10
System Control Block Base SCBB 11
Interrupt Priority Level IPL 12
AST Level ASTLVL 13
Software Interrupt Reguest SIRR 14
Software Interrupt Summary SISR 15
Interval Clock Control ICCS 18
Next Interval Count NICR 19
Interval Count ICR 1A
Time of Year TODR 1B
Console Receiver C/S RXCS 20
Console Receiver D/B RXDB 21
Console Transmit C/S TXCS 22
Console Transmit D/B TXDB 23
Memory Management Enable MA PEN 38
Trans. Buf. Invalidate All TBIA 39
Trans. Buf. Invalidate Single TBIS 3A
Performance Monitor Enable PMR 3D
System Identification SID 3E
Accelerator Control/Status ACCS 28
Accelerator Maintenance ACCR 29
WCS Address WCSA 2C
WCS Data WCSD 2D
" SBI Fault/Status SBIFS 30
SBI Silo SBIS 31
SBI Silo Comparator SBISC 32
SBI Maintenance SBIMT 33
SBI Error Register SBIER 34
SBI Timeout Address SBITA 35
SBI Quadword Clear SBIQC 36
Micro Program Breakpoint MBRK 3C
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1.7 COMPATIBILITY MODE

Under control of the operating system, the processor can execute
PDP-11 instruction streams within the context of any process. When
executing in compatibility mode, the processor interprets the
instruction stream executing in the context of the current process
as a subset of PDP-1l1l code that does not include floating point
hardware instructions or privileged instructions.

In general, compatibility mode enables the operating system to
provide an environment for executing most user mode programs
written for a PDP-11 except stand-alone software. The processor
expects all compatibility mode software to rely on the services of
the native operating system for I/0 processing, interrupt -and
exception handling, and memory management. There are some
restrictions, however, on the environment that the native
operating system can provide a PDP-11 program. For example, the
PDP-11 memory management instructions Move To/From Previous
Instruction/Data Space can not be simulated by the operating
system since they do not trap to native mode software.

PDP-11 addresses are l16-bit byte addresses. There is a one-to-one
correspondence between compatibility mode virtual addresses and
the first 64K bytes of virtual address space available to native
mode processes. As in the PDP-1ll, a compatibility mode program is
restricted to referencing only these addresses. It is possible for
the operating system to provide most of the PDP-1l1l memory
management mechanisms. For example, <compatibility mode
automatically supports PDP-ll memory segment protection, but in
512 byte rather than 64-byte segments.

All of the PDP-1ll general registers and addressing modes are
available in compatibility mode. Compatibility mode registers RO
through R6 are the low-order 16 bits of native mode registers R®
through R6. Compatibility mode R7 (the Program Counter) is the
low-order bits of native mode register 15 (the Program Counter).
Native mode registers 8 through 14 are not affected by
compatibility mode. Note that the compatibility mode register R6
acts as the Stack Pointer for program-local temporary data
storage, but that the program-local stack ‘is allocated address
space in the program region, not the control region.

A subset of the PDP-ll Processor Status Word is defined for
compatibility mode. Only the condition codes and the trace trap
bit are relevant for the PDP-ll instruction stream.

All interrupts and exceptions that occur when the processor is
executing in compatibility mode cause the processor to enter
native mode. As in native mode, it is the operating system's
responsibility to handle interrupt and exceptions. There are a few
types of exceptions that apply only to compatibility mode. They
include illegal instruction exceptions and odd address trap.
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The compatibility mode instruction set is that of the PDP-11 with
the following exceptions:

the privileged and floating-point option instructions are
illegal (this includes HALT, WAIT, RESET, SPL, MARK, the
floating instruction set, and the floating-point
processor instructions)

the trap instructions (BPT, IOT EMT, and TRAP) cause the
processor to enter native mode, where either the trap may
be serviced, or the instruction simulated

the move from/to previous instruction/data space
instructions (MFPI, MTPI, MFPD, and MTPD) execute exactly
as they would on a PDP-11 in user mode with instruction
and data space overmapped. They ignore the previous
access level and act as PUSH and POP instructions
referencing the current stack.

All other instructions execute exactly as they would on a
PDP-11/70 processor running in user mode.
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1.8 CENTRAL PROCESSING UNIT (CPU) HARDWARE INTRODUCTION
This section provides a general description of the following
function areas of the central processor:

a. buses

b. clocks

c. microsegquencer

d. control store

e. data path .

f. instruction buffer and instruction decode
g. interrupts and exceptions

Chapter 2 provides a detailed description of each of the above
areas. The translation buffer, cache, SBI control, and console
subsystem are described in the associated manuals listed in Table
1-1. Figure 1-31 illustrates the interconnection of the major
units of the CPU. : _

1.8.1 Bus Summary
The following paragraphs describe each of the buses which
interconnect the CPU. The major buses are:

Synchronous Backplane Interconnect (SBI)
Physical Address Bus (PA Bus)

Control Store Bus (CS Bus)

Internal Data Bus (ID Bus)

Memory Data Bus (MD Bus)

Visibility Bus (V Bus)

LSI-11 Bus (Q Bus)

1.8.1.1 Synchronous Backplane Internconnect

The Synchronous Backplane Interconnect (SBI) is the bidirectional
information path and communication protocol for data exchanges
between the CPU, memory, and adapters of the VAX-11/788 system.

The SBI provides checked, parallel information exchanges
synchronous with a common system clock.
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The communications protocol allows the information path to be time
multiplexed, so that a number of information exchanges may be in
progress simultaneously. During each clock period (or cycle),
interconnect arbitration, information transfer, and transfer
confirmation may occur in parallel.

SBI signals are clocked into data latches. All checking and
subsequence decision making is based on these latched signals.
Error checking logic detects single failures in the information
path. However, multiple SBI system failures are not necessarily
" detected.

A nexus, which is any physical connection to the SBI, is capable
of performing one or more of the functions listed:

l. Commander -- A nexus which transmits command and address
information.

2. Responder -- A nexus which recognizes command and address
information as directed to it and transmits a response.

3. Transmitter -- A nexus which drives the information
lines.

4. Receiver -- A nexus: which samples and examines the
information lines.

As an example, consider the CPU which issues a read-type command.
It may be considered one of three nexus types, depending on the
point in the information exchange.

When the CPU issues the read command, it is a commander since it
is issuing command/address information. At the same time it is a
transmitter since it is driving the information lines. When the
device (responder) returns the requested data, the CPU is
considered a receiver, since it examines the information lines and
the data is specifically directed to it. In the strict sense, each
nexus is a receiver (i.e., examining information lines) in every
SBI cycle.

In the case of a memory read exchange, the memory is the responder
since it recognizes and responds to a command/address signal.
Also, since it examines the information lines, it is a receiver
(along with every other nexus on the SBI). When the memory returns
the requested data by driving the information 1lines, it is a
transmitter.
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The 84 lines of the SBI are divided into these functional groups:

1. Aribitration
2. Information
3. Confirmation
4. Interrupt

5. Control.

l1.8.1.1.1 Aribtration Group =-- The arbitration group sets nexus
priority to access the SBI. It determines which nexus of those
requesting access to the SBI in a particular cycle will perform an
information transfer in the following cycle.

1.8.1.1.2 1Information Group =-- The information group exchanges
command/address, data, and interrupts summary information. Each
exchange consists of one to three information transfers.

For write-type commands, the commander uses two or three
successive SBI cycles. The number of successive cycles required
depends on whether one or two data longwords are to be written in
the exchange. In the first case, the commander transmits the
command/address in the first cycle, and a data longword in the
second cycle. In the second case, the commander transmits the
command/address in the first cycle, data longword @ in the second
cycle, and data longword 1 in the third cycle.

Read-type commands are also initiated with a command/address
transmitted from the commander. However, since data emanates from
the responder, the requested data may be delayed by the
characteristic access time of the responder. As in a write
exchange, the read data will be transmitted using one or two.
successive cycles depending on whether one or two data longwords
were requested. :

An interrupt summary exchange is response to a device-generated
interrupt to the CPU. The exchange is initiated with an interrupt
summary read transfer from the CPU. The exchange is completed two
cycles 1later with an interrupt summary response transfer
containing the interrupt information.

1.8.1.1.3 Confirmation Group -- The confirmation group provides a
path to inform the transmitter whether the infomration transfer
was correctly received and, in the case of a command/address
transfer, whether the receiver can process the command.

Each command/address or information transfer is confirmed by the
responder (or receiver) two cycles after transmission by the
commander. During a write-type exchange, command/address and data
transfers are confirmed by the responder. During a read-type
exchange, the command/address transfer is confirmed by the
responder; the reception of read data is confirmed by the
commander.
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Interrupt summary transfers are not confirmed.

1.8.1.1.4 Interrupt Request Group =-- The interrupt request group
provides a path for nexus to interrupt the CPU to service a
condition requiring processor intervention. In addition, the group
includes a special line for nexus which interrupts the CPU only
for changes in power or operating conditions.

1.8.1.1.5 Control Group -- The control group provides a path to
synchronize system activity and provides specialized system
comminucation. The group includes the system clock which provides
the universal time base for any nexus connected to the SBI. The
group also provides initialization, power fail, and restart
functions for the system. 'In addition, an interlock 1line is
provided for coordination of memory sharing in multiprocessor

systems. .

1.8.1.2 Physical Address Bus -- The physical address (PA) bus
i{s a bidirectional internal bus 28 bits wide [PA (29:02)]. The PA
bus transfers the translated physical address from the TB to the
Cache and SBI Control. In the case when the memory management
enable function is off, the address transferred is not translated.
The PA bus is also used to transfer a physical address from the
SBI Control to Cache for Cache refill and SBI invalidated

sequences.

l1.8.1.3 Control Store Bus -- The control store (CS) bus
provides the path for the transfer of each microword field to
various areas of the central processor. The CS bus is comprised of
96 data bits and 3 parity bits (1 for each 32-bit data segment).
The 96 data bits represent the VAX-11/788 control word or
microword. The microword is divided into fields, each of which
provides control for some area of the processor. Paragraph 2.2
defines each of the microword fields.
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1.8.1.4 Internal Data Bus -- The internal data (ID) bus is the
high speed, bidirectional data path of the CPU. The ID bus is used
to perform the following;

a. data transfers to and from the internal registers of the
CPU.

b. data transfers in the form of displacements and short
literals from the instruction buffer to the CPU data
paths and the FPA.

Ce. data transfers between the CPU data paths and the FPA.

d. data transfers from the internal register to the console
under console control during maintenance operation.

1.8.1.4.1 ID Bus Operation =-- The ID bus consists of 32 data
lines, 6 address 1lines, and 1 write control 1line. The address
lines specify which internal register has been designated as the
source or destination. The internal register address assignments
are listed in Table 1-7. The write control line specifies
directional control, indicating whether an internal register is to
be read onto the bus or data is to be clocked from the bus into an
internal register.

During a normal read operation, data is transferred from the
addressed internal register to the Q register of the data paths
via the ID bus. During a normal write operation, data is
transferred from the D register of the data paths to the addressed
internal register. During maintenance operation, the console can
read or write the internal register via the ID bus. In this mode,
the D and Q registers of the data paths may be addressed as
internal registers.




Table 1-7 ID Bus Register Address Assignment

Address Address

(Hex) Register Name (Hex) Register Name
00 IBUF DATA 20 USTACK

g1 TIME OF DAY 21 UBREAK

02 -RSVD- 22 WCS ADDRESS
83 SYSTEM 1D 23 WCS DATA/STATUS
04 CNSL RXCS 24 POBR

85 CNSL RXDB (TO ID) 25 P1BR

26 CNSL TXCS 26 SBR

87 CNSL TXDB (FROM ID) 27 RSVD FOR SYS SPACE
o8 DQ (ID MAINT ONLY) 28 KSP

29 NEXT INTERVAL REGISTER 29 ESP

oA CLOCK CS 2A "SSP

éB INTERVAL COUNTER 2B Usp

ec CES 2C ISP

@D VECT 2D FPDA

0E SIR 2E D.SV

oF PSL : 2F Q.SV

10 TBUF DATA 30 TO

11 -RSVD- 31 Tl

12 TBUF REG 0 32 T2

13 TBUF REG 1 33 T3

14 ACC REG 0 34 T4

15 ACC REG 1 35 TS

16 ACC MAINT REGISTER 36 T6

17 ACC CONTROL/STATUS 37 T7

18 SBI SILO 38 T8

19 SBI ERR REGISTER 39 T

1A SBI TIMEOUT ADDRESS 3A PCBB

1B SBI FAULT/STATUS 3B SCBB

1C SBI SILO COMPARATOR 3C POLR

1D MAINTENANCE 3D P1LR

1E CACHE PARITY 3E SLR

1F -RSVD- 3F RSVD FOR SYS SPACE

NOTE
Data formats and bit descriptions of
each of the ID bus registers is provided
in the VAX-11/788 Maintenance Handbook.
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1.8.1.4.2 1ID Bus Control -- Control of the ID bus is derived from
two fields of the microword (UFS and UCID). Function Select (UFS)
is a one bit field. If this bit is clear, the ID address and write
signals are zero and the instruction buffer data is gated onto the
ID bus. This data will be clocked into the Q register of the data
path when selected.

If the UFS bit 1is set, the console ID (UCID) field of the
microword controls the ID bus. The UCID field specifies the type
of data transfer (read or write) and the address source. Table 1-8
lists the address source and operation selected by each UCID field
value. ‘ . .

During normal operation, the internal register addresses are
generated in either the Shift Count (SC) register in the data
paths or the UKMX field of the microword. During maintenance
operation, the address is generated by the console which controls
the operation., Console control allows access to the Writable
Control Store and provides visibility of the internal registers
from the console.

Table 1-8 1ID Bus Control

UCID Field Address
(Hex) Operation Source

') NO-OP -

1 UNUSED -

2 CNSL ACK Console

3 CNSL CONT Console

4 ID DATA«¢——]ID REG Data Paths
5 ID DATA«———ID REG Microcode
6 ID REGe———ID DATA Data Paths
7 ID REGe———ID DATA Microcode




CNSL ACK is used to notify the console that the CPU is not using
the ID bus and that the console may assert its ID maintenance bit
and an internal register address CNSL ACK also sets the Console
Command Mode flip-flop. CNSL CONT is used to clear the Console
Command Mode flip-flop in order to relinquish control of the ID
bus.

1.8.1.5 Memory Data Bus =- The memory data (MD) bus is the
bidirectional information path for longword aligned data
_exchanges. The MD bus connects the data path portion of the CPU
and the instruction buffer to the cache and SBI control. The bus
consists of 40 lines: 32 data lines, 4 parity lines, and 4 mask
lines. The parity lines provide parity for each of the four data
bytes (i.e., parity bit 8 associated with byte 0, bits 7--0,
etc.). The mask bits are associated with the data bytes similar to
the parity bits. The mask bits inform the system which bytes are
to be read or written.

Data is transferred over the MD bus in the following
circumstances: -

a. Data requested by the data path or instruction buffer is
‘found in cache (hit) and is transferred back to the data
path or instruction buffer via the MD bus.

b. - Data requested by the data path or instruction buffer is
not found in cache (miss) and is retrieved from main
memory. The data is transferred from the SBI control to
cache and the data path (or instruction buffer)
simultaneously via the MD bus.

c. CPU write data is transferred to the SBI control via the
MD bus and sent over the SBI to be written in memory. If
the location is in cache, the data is also updated in
cache simultaneously via the MD bus.

d. Interrupt Summary Read Responses are transferred over the
MD bus to the data path.

1.8.1.6 Visibility Bus =-- The visibility (V) bus is used for
diagnostic isolation of CPU system failures. The V bus consists of
eight serial data lines, a load signal line, a clock signal line,
and a self-test 1line. Each of the participating CPU modules
contains at least one V bus shift register. The data input lines
to the shift register monitor specific test points on the CPU
module. The load signal causes the shift register to parallel load
from the test points when the CPU is in a stable condition. The
clock signal can then be used to read the latched data serially
from each of the shift registers into a register on the console
interface board (CIB) where it can be read by LSI-11 software.
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1.8.1.7 LSI-11 Bus (Q Bus) -- The Q bus connects the LSI-11
processor (and its ROM and RAM memories), the console terminal
interfaces, and the floppy disk interface to the Console Interface

Board, and thus to the CPU. The 16 address signals and 16 data
signals share the same bus lines. Fourteen other LSI-l1 signal
lines are used in the VAX-11/780 configuration for control signals
(note that the DMA control lines are not used).

A master-slave relationship defines communication between the
processor and the other devices on the bus. Each control signal
issued by a master device must be acknowledged by a slave device
in order to complete a transfer. The LSI-ll processor must
therefore become bus master in order to read or write any
interface register or memory location on the Q bus. The Q bus
permits an addressing structure in which control, status, and data
registers for peripheral devices are directly addressed as memory
locations. No system <clock is used on the Q bus, and all
communications on it are asynchronous. However, when one of the
interface units such as the serial line interface for the console
terminal must transfer data (i.e., a character) to or from the
LSI-11 processor, it must interrupt the processor and thereby
invoke a service routine which will handle the actual data
transfer.

Note that the serial line interfaces and the floppy disk interface
cannot communicate directly with the Console Interface Board, nor
can the CIB communicate directly with them. All transfers
initiated from the interface begin with interrupts to the LSI-11
processor.

1.8.2 Clocks

The following provides a brief description of each of the
VAX-11/780 clocks.

1.8.2.1 Processor Clock -- The processor clock provides the
circuitry required for the generation of SBI timing signals,
distribution and decoding of SBI signals to the processor modules,
and power up/power fail sequencing.

The synchronnus operation of the VAX-11/73C is based on a clack
cycle of 200 ns. There are four 50 ns time states per cycle (TO,
Tl, T2, and T3). The CPU time states and SBI time states are
derived from SBI signals called TP (timing pulse), PCLK (clock
phase), and PDCLK (clock phase delayed). Figure 1-32 shows the
‘relatinnship between the SBI/CPU timing signals and the derived
time states.

NOTE
CPU and SBI time states are not the
same. CPTP=SBI Tl, CPT1=SBI T2, CPT2=SBI
T3, and CPT3=SBI T#@.
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1.8.2.2 Time of Year Clock -- The time of year clock is used by
software to perform various timekeeping functions but its primary
purpose is to provide the correct time to the system after power
- failures. This feature eliminates the need for an operator to
enter the time at system restart.

The time which is initially input by the operator is converted by
software into a binary number that represents the month, day,
hour, etc. This value increases at time elapses. At the end of
each year, software will reset the clock to the beginning of the
year value.

1.8.2.3 Interval Time Clock -- The interval time clock provides a
method of accurately measuring time intervals. The processor is
notified of the completion of the time interval via an interrupt.
This feature is used by software to perform time dependent events,
accounting, and maintenance of software date and time.

There are three registers associated with the interval time clock
operation; interval count register, next interval register, and
clock control status register. Chapter 2 provides a description of
these registers and clock operation.

1.8.3 Microsequencer

The microsequencer contains the 1logic required to generate the
next microword address. The mode in which the address is generated
is determined by a number of conditions (e.g., microtraps, stalls,
console operations, etc.). The microsequencer monitors and
prioritizes these conditions to select the proper source for the
13 microword address lines. If a decision point fork is reached in
the microprogram, the instruction decode logic provides the source
for the lower 8 address bits. The most significant address bit
(bit 12) determines which control store will be addressed. If bit
12 equals @, the PCS is accessed; if bit 12 is 1, the WDCS is
accessed.

1.8.4 Control Store

The basic microprogram of the VAX-11/788 is contained in a
standard 4K 99-bit PROM control store (PCS). The 99-bit control
word (microword) is comprised of 96 data bits and 3 parity bits (1-
for each 32-bit segment). Each microword is addressed by BUS UPC
bits 12:008, generated by the microsequencer or the instruction
decode logic.

The standard system configuration includes a 1K 99-bit writable
diagnostic control store (WDCS). The control store is used to
contain diagnostic microprogram routines and also updates to the
basic microprogram.

Parity is checked on each microword read from either the PCS or
WDCS. One parity bit corresponds to each 32 bit section of the
96-bit microword. Detection of an odd number of ones in any 33 bit
field will result in a microtrap.
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1.8.5 Data Path

The data path is divided into four functional areas: address,
arithmetic, data, and exponent section. Each of the sections
operates independently, allowing simultaneous processing of data
and addresses.

1.8.5.1 Arithmetic Section =-- The arithmetic section provides the
circuitry for arithmetic and logic operations, bit mask and
constant generation, shifting, and temporary storage of data or
addresses. This section also provides the focal point of the data
path. Data or address information is transferred between other
sections of the data path via the ALU of the arithmetic section.

The arithmetic logic unit (ALU) is the main processing unit of the
arithmetic section. The ALU performs arithmetic or 1logic
operations on longword (32 bit) data types. Byte or word data
types are sign or zero extended prior to being input to the ALU.
The input sources of the ALU provide a number of operations
including the following.

Generation of new PC -- The program counter is routed to the ALU
through one of its input multiplexers to allow modification of the
PC in certain addressing modes.

Operations on stored data -- Data to be used during instruction
execution can be stored in the scratch pad register sets or in the
D and Q registers of the data section. The operands stored in
these registers are input to the ALU to allow performance of
operations required by the current instruction. Multiplication and
division of operands is accomplished by the shifter at the output
of the ALU.

Restarting of instructions -- The register log (RLOG) and PC save
(PCSV) inputs to the ALU allow instructions to be restarted after
a fault. The RLOG stack contains a record of changes made to the
scratch pad register set during instruction execution. The PCSV
register contains the lower 8 bits of the PC at the beginning of
an instruction.

Assembly of floating point data types -- During the execution .of
floating point instructions, inputs from the data, exponent, and
control section are assembled by one input multiplexer of the ALU
to form a packed floating point data type.

1.8.5.2 Address Section -=- The address section contains the
virtual address register (VA), instruction buffer address register
(VIBA), and the program counter (PC).

The VA holds the address of the memory data referenced by the
processor which is to be read or written into the data section.
The VA will generally contain a virtual address which must be
translated to a physical address to reference memory. However, the
VA may hold a physical address which was generated during the
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translation process or when the memory management mechanisms have
been disabled. The VA can be incremented by four to advance the
address by one longword.

The VIBA holds the address of the instruction stream data which is
to be loaded into the instruction buffer. The VIBA is loaded with
a new address whenever the instruction execution changes sequence
such as a JUMP or successful BRANCH instruction. The instruction
buffer control 1logic increments the VIBA by four each time
instruction data has been successfully fetched from memory.

The PC holds the address of the instruction op code each time a
new execution sequence is started. As operand specifiers of the
instruction are evaluated, the PC is incremented by an appropriate
value. As previously mentioned, a new PC can be generated by
routing the contents through the ALU.

1.8.5.3 Data Section =-- The data section contains the two major
32-bit holding registers (Q and D registers) used for temporary
storage of operand data. This section provides the interface for
the transfer of data to and from memory (via the memory data bus)
and between internal registers (via the internal data bus). Also
included is the circuitry required for the unpacking of floating
point data types and the shifting and byte alignment of operand
data.

The Q register holds the data transferred from the internal data
(ID) bus and the D register holds data to be transmitted to the ID
bus. Data received from memory or to be transmitted to memory is
stored in the D register. The D and Q registers are used in
conjunction to hold data types larger than 32 bits.

1.8.5.4 Exponent Section -- The exponent section of the data path
processes the exponent value of floating point numbers. Exponent
processing is performed in parallel with fraction processing
performed in the arithmetic and data sections.

1.8.6 Instruction Buffer and Instruction Decode

The instruction buffer is basically an 8-byte register used to
store instructions for evaluation by the processor. The op code of -
each instruction is stored in the first byte (byte @) of the
buffer register. The remainder of the instruction (operand
specifier and extensions) is stored in subsequent bytes of the
buffer register. The op code is kept in byte @ while operand
specifiers are evaluated. As each evaluation is completed, the
operand specifier and associated data is removed from the buffer
register and replaced with a new operand specifier. The process
continues until all evaluations are complete and the instruction
can be executed. The current op code is then removed and replaced
by the op code of the next instruction. The structure of the
buffer allows new instruction stream data to be prefetched and
stored in upper byte locations while the current instruction is
being evaluated for execution in the lower byte locations. The
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ability to prefetch instruction stream data greatly enhances the
overall performance of the processor.

The instruction decode logic evaluates the instruction stream data
stored in the first two bytes of the buffer register. As
previously mentioned, byte @ contains the op code of the
instruction and byte 1 contains an operand specifier. These bytes
are decoded to generate the lower eight bits of the next
microaddress when the microprogram reaches a decision point fork.
Each time a fork is reached, the decoded instruction provides an
entry point in the microprogram to a flow which evaluates an
operand specifier or to . an execution flow unique to the
instruction.

1.8.7 Interrupts and Exceptions

Interrupts and exceptions are the result of events within the
system which require the execution of software outside the current
flow of control. Exceptions are the notification of events which
are relevent to the currently executing process whereas interrupts
are the notification of events which are generally independent of
the current process.

Interrupts and exceptions are prioritized to determine the order
in which events will be serviced. The processor has 31 interrupt
priority levels (IPL), divided into 15. software levels and 16
hardware levels. Most exception service routines execute at the
lowest interrupt priority level (IPLO). However, exceptions which
represent serious system failures raise the IPL to the highest
level (IPL 1F, hex). Interrupt levels @1 through OF (hex) are
dedicated for use by software. Interrupt levels 10 through 17
(hex) are for use by devices and controllers, including Unibus
devices. Unibus levels BR4 to BR7 correspond the VAX-1ll interrupt
levels 14 to 17. Interrupt levels 18 to 1lF (hex) are for use by
urgent conditions, including the interval clock, serious errors,
and power fail.

1.9 MODULE LOCATIONS
Table 1-9 1lists the slot locations of each module in the KA780
Central Processing Unit backplane.
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Table 1-9 KA780 Module Utilization

Module Board Slot
Number Mnemonic Function Location
M8236 CIB Console Interface Board 29
M8289 FCT Floating Point Accelerator* 28
M8288 FAD Floating Point Accelerator* 27
M8287 FML Floating Point Accelerator* 26
M8286 FMH Floating Point Accelerator* 25
M8285 FNM Floating Point Accelerator* 24
M8235 usc | Microsequencer 23
M8234 PCS PROM Control Store 22
21
M8233 WCS Writable Diagnostic Control Store 20
. 19
M8233 or : A
M8234 0oCs Optional Control Store* lg
1
M8232 CLK Processor Clock 16
M8231 ICL Interrupt Control 15
M8230 CEH ‘Condition Codes/Exceptions 14
M8229 DAP Data Path 13
M8228 DCP Data Path 12
M8227 DDP Data Path 11
M8226 DEP Data Path . 10
M8225 DBP Data Path 29
M8224 IRC Instruction Decode 28
M8223 IDP Instruction Buffer a7
M8222 TBM Translation Buffer Matrix 286
M8221 CDM Cache Data Matrix @5
M8220 CAM Cache Address Matrix 04
M8219 SBH SBI High Bits Interface 23
M8218 SBL SBI Low Bits Interface 82
M8237 TRS SBI Terminator plus Silo g1

*These are optional modules and if not included in the system, are
replaced by blank modules.

1-74




: CHAPTER 2
PUNCTIONAL/LOGIC DESCRIPTION

2.1 INTRODUCTION

Chapter 2 provides a detailed functional description of each major
area of the KA788 central processing unit shown in Figure 2-1,
excluding the following: '

1. Translation Buffer, Cache, SBI Control
2. Console Interface and Q Bus Devices
3. Floating-point Accelerator

These functional areas. are fully discussed in their associated
manuals listed in Table 1-l.

2.2 MICROPROGRAM CONTROL .
Execution of each VAX-1l1 or PDP-l1 instruction requires the
performance of a sequence of operations. = This sequence is

determined by the microprogram contained in the PROM control store
(PCS) or writable diagnostic control store (WDCS). The PCS
provides storage for 4K microwords and the WDCS provides storage
for 1K. Each 96-bit microword is comprised of several fields
which control particular functions in the processor. Figure 2-2
illustrates the format of the entire control word and defines each
of the fields in the word. Descriptions of individual control
word fields are provided in this chapter. They are included with
the discussion of the logic which is affected by each particular
field. The address of each microword is generated by the
microsequencer or instruction decode logic. Address generation is
described in Paragraph 2.3.
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2.2.1 How to Read the Microcode '

This section introduces the microcode by describing the field,
value, label and microinstruction definitions. Also included are
definitions of macros, pseudo-operators, and location control.

2.2.1.1 Field Definitions -- Microcode field definitions have the
form SYMBOL/=J,K,L,M. The J parameter is only meaningful when "D"
is specified as the default mechanism. 1In that case, J gives the
default value of the field in hexadecimal. The K parameter
defines the field size in the number of bits (in decimal). The L
parameter defines the field position (in decimal) as the bit
number of the rightmost bit of the field. Bits are numbered from
@ on the right. The M parameter is optional, and selects a
default mechanism for the field. The 1legal values of this
parameter are the characters "D", or "+", where:

D Indicates that J is the default value of the field if no
: explicit value is specified.

+ Is used on the jump address field to specify that the
default jump address is the address of the next
instruction assembled (not, in general, the current
location +1).

In general, a field corresponds to the set of bits that provide
select inputs for multiplexers or decoders, or controls for the
ALU., For example:

ALU/=0,4,66,D

The microcode field which controls the ALU is four bits wide and
the rightmost bit is shown in the 1listing as bit 66 of the
microinstruction. 1If no value is specifically requested for the
field, the microassembler will ensure that the field is 4.

AMX/=0,2,80
The field which controls the AMX is two bits wide, beginning on
bit 88. The fourth parameter of the field is omitted. Therefore,

the field is available to the microassembler for modification if -
no value is explicitly called out for the field.
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2.2.1.2 Value Definitions -- Following any field definition,
symbols may be created in that field to correspond to values of
the field. The form is:

SYMBOL=N

"N* is the value of the symbol (in hex) when used in the field.
The following is an example:

ALU/=E,4,66,b ;field definition in which one of the
following symbols exist.

XOR=8
A+B=5

Here the symbols "XOR" and "A+B" are defined for the ALU field.
To the assembler, therefore, writing "ALU/XOR" means put the value
8 into the 4 bit field beginning on bit 66 of the microword. The
symbols are chosen for mnemonic significance so that one reading
the microcode would interpret "ALU/XOR" as "the output of the ALU
shall be the exclusive OR or its A and B inputs.” We could write
“ALU/NOP" in every microinstruction in which we did not want the
ALU to change. However, the default mechanism is used unless a
microinstruction explicitly specifies a change to the ALU. The
assembler will make the value of this field #.

2.2.1.3 Label Definitions -- A microinstruction may be labeled by
a symbol followed by a colon preceding the microinstruction
definition. The address of the microinstruction becomes the value
of the symbol in the field named "J". For example:

F00:J/F00 )

This is a microinstruction whose J field (jump address) contains
the value "F@0". It also defines the symbol "F@0" to be the
address of itself. Therefore, if executed by the microprocessor,
it would loop on itself.

2.2.1.4 Comments -- A semicolon anywhere on a line causes the
remainder of the line to be ignored by the assembler. It is only
information for the reader. For example:

ALU/=0,4,66,D ;field definition in which one of the
following symbols exist.

Only ALU/=0,4,66,D is relevant to the assembler.

2.2.1.5 Microinstruction Definition -- A word of microcode is
defined by specifying a field name, followed by a slash (/),
followed by a value. The value may be a symbol defined for that
field, a hex digit string, or a decimal digit string
(distinguished by the fact that it is terminated by a period).
Several fields may be specified in one microinstruction by
separating field/value specifications with commas. For example:
AMX/LA ,BMX/D,ALU/A-B
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The field named "AMX" is given the value LA (to cause the
multiplexer on the A side of the ALU to select LA). The field
"BMX" has value "D", and the field "ALU" has value "“"A-B".

2.2.1.6 Continuation -- The definition of a microinstruction may
be continued on two or more lines by breaking it after any comma.
If the last non-blank character on a 1line is a comma, the
instruction specification is continued on the following line. For
example:

AMX/LA ,BMX/D ;Select LA and D as ALU inputs
ALU/A-B :Select ALU to perform A-B

By convention, a blank line and a line of hyphens appears between
microinstructions. This makes it easier' for the reader to
distinguish between a continuation and separate microinstructions.

2.2.1.7 Macros -- A macro is a symbol whose value is one or more
field/value specifications. A macro definition is a 1line
containing the macro name followed by a quoted string which is the
value of the macro. For example:

D__LA-D *AMX /LA ,BMX/D,ALU/A-B,D__ALU""
The appearance of a macro in a microinstruction definition Iis
equivalent to the appearance of its value. Macros may have
parameters enclosed in square brackets ("[" and "]"). The

definition of a macro with parameters includes paired brackets to
indicate where the parameters should go. It uses "@" followed by
a decimal digit string to indicate which symbols in the macro body
should be replaced by the parameters. For example:

RC []__D+K [] “AMX/D,KMX/@2,BMX/KMX,ALU/A+8,SPO.RC/@1"
This macro indicates that the first parameter (selected by @1)
should be used as the value in the "SPO.RC" field and the second
parameter should be used as the value in the KMX field. A typical
use of this macro might look 1like:
RC[T1]__D+K[34]
In this case, the expansion would be:
"AMX/D,KMX/34,BMX/KMX,ALU/A+B,SPO.RC/TI"

2.2.1.8 Pseudo-Operators -- The microassembler contains the
following pseudo-operators listed in Table 2-1:
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Table 2-1 Microassembler Pseudo-Operators

Pseudo Ops Function

.UCODE and .DCODE Selects the RAM into which subsequent
microcode will be loaded and, therefore, the
field definitions and macros that are
meaningful in subsequent microcode.

.TITLE Defines a string of text to appear in the page
header.

*.TOC . Defines an entry for the table of contents at
the beginning.

.SET Defines the value of a conditional assembly
parameter.

.CHANGE Redefines a conditional assembly parameter.

«DEFAULT Assigns a value to an undefined parameter.

«IF Enables assembly if the value of the parameter
is not zero.

« IFNOT Enables assembly if the parameter value -is
zero.

.ENDIF Re-enables assembly.

«RTOL Enables bits numbered from 6 on the right of
the microinstruction.

.HEXADECIMAL Enables radix to be 16 instead of default
radix 8.

+REGION

.CREF and .NOREF

+LIST and .NOLIST

.BIN and .NOBIN

«MACHINE

Defines preferred ports of the .UCODE space.

Enable and disable the <collection of

cross-reference information on symbol usage.

Enable and disable output listing.

Enable and disable leaving room at the left
margin for binary output.

Selects microassembler features needed for
special microprocessor.
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2.2.1.9 Location Control -- A microinstruction labeled with a
number is assigned to that address. The character "=" at the
beginning of a line, followed by a string of 0s, 1ls, and/or *s,
specifies a constraint on the address of the following
microinstructions. The number of characters in the constraint
string (excluding the "=") is the number of low-order bits
contained in the address. The microassembler attempts to find an
unused location whose address has zero bits in the positions
corresponding to @s in the constraint string and one bits where
the constraint has 1ls. Asterisks denote "don't care" bit
positions.

If any zeros are in the constraint string, the constraint implies
" a block of (2 * * N) microwords, where N is the number of @s in
the string. All locations in the block have 1ls in the address
bits corresponding to 1ls in the string. Bit positions denoted by
*s are the same in all block locations. :

In such a constraint block, the default address progression is
counting in the "@" positions of the constraint string, but a new
constraint string occurring within a block may force skipping over
some locations of the block. Within a block, a new constraint
string does not change the pattern of default address progression,
it merely advances the location counter over those locations. The
microassembler fills them in later.

A NULL constraint string ("=" followed by anything except 6, 1, or
*) serves to terminate a constraint block. For example:

This specifies that the low-order address bit must be

zero. The microassembler finds an even-odd pair of
locations and places the next two microinstructions into
them.

b. = 11

This specifies that the two low-order bits of the address
must both be ones. Since there are no @s in this
constraint, the assembler finds only one 1locoation:
meeting the constraint.

c. = Ghhhhn

This specifies a pair of addresses; the first having a
zero in thee %"20" bit, and the second having a one in
that position. All other bit positions are the same.
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2.3 MICROSEQUENCER AND CONTROL STORE

The primary function of the microsequencer is to provide the
address of the control store word. The microsequencer controls
entry into the microprogram during normal program flow and during
the following operations;

Power Up/Power Down
Microtraps

Stalls

Microword ECOs
Console Operations

The address of the control store word is transferred to the PROM
Control Store (PCS) and Writable Diagnostic Control Store (WDCS)
over the Microprogram Counter (UPC) Bus. Under certain conditions
(during a Decision Point Branch), a portion of- the control store
address (UPC bits 07:00) is generated by the instruction decode
logic. Refer to the functional block diagram in Figure 2-3.

2.3.1 Microsequencer Mode Control (Picosequencer)

The source of control word address is dependent on the
microsequencer mode of operation. The picosequencer determines the
microsequencer mode by latching conditions generated in other
sections of the CPU. These conditions are input to a priority
decoder which determines the source of the control store address.
The following 1lists the modes (conditions) in order of their
priority.
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Highest Priority Initialize (Power Up or Power Down)
Maintenance Return (Console Operation)
Cache Stall
Microtrap
Micro ECO

Lowest Priority Normal

The outputs of the priority decoder are used to generate the
select lines for Microprogram Counter Multiplexer (UPC MUX). The
UPC MUX provides the address source for the control store word
(via the UPC BUS). Refer to Figure 2-4.

NOTE
Bit 12 of the UPC MUX determines which
control store will be addressed. If bit
12 of the address equals @, the PCS is
accessed; if bit 12 equals 1, the WCS is
accessed.

The Microsubroutine (USUB) field of the current control word is
also used to select the address source of the next control word.

usuB FIELD

HEX BUS CS 65 BUS CS 64 FUNCTION

) L L NO-OP

1 L H CALL

2 H L RETURN

3 H H DECISION POINT BRANCH

'Refer to Paragraph 2.3.3 for a description of the USUB field and
its effect on microsequencer operation.
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BUS UPC 12:00

BUS UPC 07:00
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/ UPC MUX \ / UPC MUX \
11:08 o 03:00 @
p | -
2 2
UPCSV 11:08| +3 2 , g
(STALL) (ueco) [g 8 ure Sy 03:00 UECO 198
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STALL PRIORITY
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INIT SEQ
| — |
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WHEN USUB = 3 (DECISION POINT BRANCH), UPC MUX BITS 07:00 ARE DISABLED.

Fig

ure 2-4

Picosequencer and UPC Mux
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Table 2-2 shows the relationship between the conditions (mode)
present and the data selected by the UPC MUX as the address
source.

2.3.2 Microsequencer Mode Descriptions
This section provides a description of the operations performed by
the microsequencer in each of the possible modes.

2.3.2.1 Normal Mode -- Under normal operating conditions, the UPC
MUX selects the Next Microword Address (NUA) bus for the control
word address. The data source for the NUA bus is the Jump (UJMP)
field and the Branch Enable (UBEN) field of the current microword.

The J field comprises the lower 13 bits of the microword (BUS CS
12:006). BUS CS bits 12:00 are stored in the UJMP register of the
microsequencer. The lower five bits of the UJMP register (UJMP
P4:00) are ORed with the branch bits generated by the branch
enable logic. The value of the BEN field of the microword (BUS CS
76:72) determines which branch conditions (generated in other

areas of the CPU) will be used to modify the next microaddress.
Refer to Figure 2-5.

The branch bits which are ORed with UJMP bits 04:00 are signals
which monitor processor conditions and data values. The
microaddress which is generated depends on which group of signals
is selected by the branch enable logic. The following shows the

relationship between the types of branch sets available and BEN
field value.

Possible Branch
BEN Field $ of Selectable UPC Lines Addresses

Values Branch Sets Effected Per Set
Group 1 PF:00 16 92:00 8
Group 2 1B:10 12 63:00 16

Group 3 1F:1C 4 04:00 32
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Table 2-2 Control Word Address Source

MODE CONDITION UPC MUX DATA SOURCE SELECTED
12 1 09 08 07 04 03 00
" POWER UPORDOWN | INIT 0 1 0 0
Ny
CIBN
UPC 12
12 00
. CONSOLE OPERATION | MAINT RET BUS NUA 12:00
12 00
CACHE STALL STALL UPCSV  12:00
122 1 09 08 07 04 03 00
MICRO TRAP UTRAP 0 1 0 BUS NUA 03:00
CIBN
UPC 12
» 12 1 09 08 07 06 05 00
MICRO ECO UECO 1 0 1o} UECO 05:00
12 00
NORMAL NO COND. BUS NUA 12:00
12 n 08 07 : 00
NORMAL USuB =3 BUS NUA 11:08 BUS UPC 07:00
FPA
UMX 12
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Table 2-3 lists each BEN value and branch set selected.

Table 2-3 Branch Condition Sets

Group 1 Group 2 Group 3

(8-way branches) (16-way branches) (32-way branches)

BEN Branch Set BEN Branch Set BEN Branch Set

value | Selected Value Selected Value Selected

"} NOP 10 UTrap Vector 1C PSL Mode

1 YA 11 Last Reference 1D Translation
Test

2 ROR 12 EALU CC 1E Not Used

3 c3l1 13 Not Used 1F Not Used

4 Not Used 14 sC

5 Not Used 15 ALUl-0

6 Accelerator 16 State 7-4

7 Not Used 17 State 3-8

8 Data Type (VAX) 18 D Bytes

8 END DPI (1l1) 19 D 30

) IR2-1 (VAX) 1A PSL CC

9 PC Modes (11) 1B ALU CC

A REI

B IB Test

C MUL

D Signs

E Interrupt

F Decimal

If the Subroutine Control (UsSuB) field of the current
microinstruction equals 3, the lower 8 bits of the UPC MUX (UPC
@7:00) are disabled. When the microprogram reaches a Decision
Point Fork, the low 8 bits of the next microaddress must be
specified by the instruction decode logic via BUS UPC. bits 07:00.
Also, when the USUB=3, bit 12 of the microaddress is defined by
the OR condition of UJMP bit 12 and a line from the Floating Point
Accelerator (FP1 UMX 12). This allows the Floating Point
Accelerator (FPA), if present in the system, to direct the
microaddress to the Writable Diagnostic Control Store (WDCS) .

2.3.2.2 Microword ECO Mode -- In UECO mode, the microsequencer
generates microaddresses which access the Writable Diagnostic
Control Store. The ECO logic and WDCS allow sections of the
microcode, contained in the PROM Control Store (PCS), to be
rewritten without actually replacing PROM chips. The new or
updated microcode is stored in the WDCS and is accessed when a
changed PCS address is encountered. The Field Programmable Logic
Array (FPLA) holds the PCS addresses which require changes and the
corresponding WDCS addresses which contain the new microcode
(refer to Figure 2-3).
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When the current microaddress (BUS UPC 12:08) matches an address
stored in the FPLA, and ECO dispatch signal is generated. This
signal causes microword registers in various sections of the CPU
to be cleared and also causes an abort cycle signal to be sent to
the translation buffer. These events effectively create a NO-OP
cycle. The NO-OP cycle allows the new microaddress to be formed
using the ECO bits read from the FPLA. The ECO dispatch signal
also enables the picosequencer to select ECO mode if no higher
priority conditions are enabled.

When the UPC bits match the address stored in the FPLA, the
corresponding bits for the new microaddress are loaded into the
UECO register. The contents of the UECO register (UECO ©5:00) are
joaded into the UPC MUX to form the next microaddress. In UECO
mode, the UPC MUX selects UECO 85:80 as the source for the lower 6
bits of the microaddress and the remaining seven bits are
hardwired. Figure 2-6 shows the format of the microaddress formed.
during ECO mode. '

UPC Bits 12 11 09 08 07 06 O5 00
Microaddress| 1 0 1 (o} 1

UECO 05:00

TK-0238

Figure 2-6 Microaddress Format in UECO Mode

The FPLA provides storage for 48 addresses, thereby allowing 48
different changes to be made to the microprogram in PCS. However,
more than 48 microinstructions can be replaced. The FPLA only
provides the starting address of the revised program section in
WDCS. Each ECO may include several microinstructions. The
microprogram will be directed back to the PROM Control Store b

the UJMP and UBEN fields of the final microinstruction of eacg
revised section.

2.3.2.3 Microtrap Mode =-- In utrap mode, the microsequencer
generates specific vector locations (in WDCS or PCS) which address
trap handling conditions in the CPU. The presence of these error
conditions causes the picosequencer to select utrap mode if no
higher mode conditions are present. The reception of the utrap
signal by the microsequencer causes microword registers to be
cleared and an abort cycle to be generated. As in UECO mode, these
conditions create a NO-OP cycle in which a new microaddress
(vector) can be formed.
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Microtrap mode forces the UPC MUX to select BUS NUA 03:00 as the
source for the lower 4 bits of the vector address. Bits 11l:04 of
the vector are hardwired and bit 12 is determined by the console.
Refer to Figure 2-4. If bit 12 is a 1, the vector address is in
the WDCS and if bit 12 equals @, the vector is in PCS. BUS NUA
bits 93:00 are formed by the branch bits. The utrap signal causes
the UJMP and UBEN fields of the microword to be cleared. If the
UBEN field equals @, a particular branch enable set (BEN 14d) is
selected. A BEN 10 selects inputs from the interrupts and
exception logic. This logic will control the value of BUS NUA bits
03:00 and thereby select the proper vector location for the utrap
encountered. The UJMP and USUB fields will be cleared and will not
effect the vector generation. Figure 2-7 shows the format of the
microaddress (vector location formed during microtrap mode).

UPC Bits 12 11 o8 07 04 03 00
Microaddress 1 (4]

|

CIBN12

UJMP 03:00 __| |BRANCH

(EQUAL 0) ' |BITS 03:00
INPUTS FROM
BEN10 — INTERRUPTS AND

EXCEPTIONS LOGIC

TK-0239
Figure 2-7 Microaddress Format in UTrap Mode

When a utrap sequence is initiated, the contents of the
Microprogram Counter Save Register (UPCSV) are pushed onto the
Microstack. The UPCSV contents specify the address of the next
microword that would have been accessed under normal conditions.
This address is saved so that the microprogram can be returned to
normal flow after the trap has been serviced. The ustack pointer
(USP) address is decremented prior to writing data onto the stack.
Once the utrap routine has been completed, the microstack location
containing the next normal address is read from the stack and
loaded into the ustack register. The output of the ustack register
(ustack 12:00) is then routed to the NUA bus. The contents of the
ustack register are enabled onto the NUA bus by the RETURN signal,
generated when the USUB field equals 2. The UPC MUX will select
BUS NUA 12:00 as the source for the next microaddress.

The Control Store Parity Error microtrap is an exception with
regard to the storage of the UPCSV register contents on the
microstack. If there is a control store parity error, the clocking
of the UPCSV register is inhibited. Therefore, the UPCSV data
which is loaded onto the stack is the failing microword address
rather than the address of the next executable microword. The next
executable microword is loaded on the stack if any other utrap
occurs.
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The range of utrap vector addresses is as follows:
Control Store Vector Address Range (Hex)

PCS 8100--010F
WCS 1100--110F

A signal from the console (CIBN UPC 12) controls the value of the
most significant address bit (UPC 12) and therefore determines
which control store will be accessed.

The following 1lists each microtrap and its associated vector
location.

Vector Address Microtrap

X100 System Init

X101 Unaligned Data

X102 Page

X103 M bit

X104 Protection Violation
X105 TB Miss

X106 Reserved Floating
X107 TB Parity

X108 Cache Parity

X109 Reserved

X10A Reserved

X108 Reserved

X1l@cC Read Data Substitute
X16D Time Out .
X10E 0dd Address

X10F Control Store Parity

If X = @6, the vector address is in PCS
If X = 1, the vector address is in WCS -

Multiple utrap conditions can be present at the same time.
Therefore, the conditions are input to a priority decoder to
determine which microtrap will be serviced first. The relative
priorities of each utrap are listed listed as follows:

Highest System Init
CS Parity Error
0dd Address Error
Time Out
Read Data Substitute
Cache Parity Error
Translation Buffer Error
Reserved Floating Operand
Translation Buffer Miss
Protection Violation
Modify Bit
Page Trap

Lowest Unaligned Data
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2.3.2.4 Cache Stall Mode -- Cache stall mode is initiated if the
signal SBLT STALL is sent to the microsequencer from the SBI
control. In this mode, the execution of the next microinstruction
is temporarily prevented. A number of conditions can cause the
stall signal to be generated (e.g., if during a read operation,
the requested data is not in cache).

If the cache stall mode is enabled, the clear u word signal is
generated. This effectively puts the microprogram in a NO-OP

state. The NO-OP state_ma¥ last for several microcycles until the
condition causing the stall is negated.

Once the stall condition is negated, the UPC MUX selects the UPCSV
register contents (UPCSV 12:08) as the source for the next
microaddress. The UPCSV register will contain the address of the
next instruction that would have been executed if the stall had
not occurred. : )

NOTE
The Microsequencer board provides 13
LEDs which display the contents of the
UPCSV register and a single LED which
displays the stall condition.

2.3.2.5 Maintenance Mode -- In maintenance mode the console can
control a number of functions, including the selection of the next
microaddress. Data can be written from the console to the

microsequencer via the Internal Data (ID) bus. The destination of
the data written over the ID bus is determined by the ID bus
control logic. Refer to Figure 2-8.

The ID bus consists of 32 data lines. Control of this data is
determined by an additiohal 7 lines. One control line (ID WRITE)
specifies whether data is being written into a specified register
from the ID bus or if data is being read from the register onto
the ID bus. The remaining 6 lines (ID ADDR 5:8) provide the
address of the register to be read or written. It should also be
noted that the ID bus is divided in half. That is, half of the
addressable registers on the ID bus are viewed as being to the
right of the ID bus control and the other half to the left of the
ID bus control. The right and left lines are buffered separately
to accommodate the loading on the ID bus.

The source of the address lines and the write control line is the
same for both the right and left halfs of the bus. The right or
left designation simply indicates the position of the register
relative to the control logic. The microsequencer is to the left
of the ID bus control and therefore its registers are addressed by
the lines ID LEFT ADDR 5:0 and the direction of the data flow is
controlled by the ID LEFT WRITE line. In maintenance mode, the
value of the address lines and control line is determined by the
console. The console initiates maintenance mode by asserting the
ID MAINT signal. The following shows the address of the
microsequencer registers which can be read or written from the ID
bus.
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Microsequencer Register 1ID Address (Hex)

USTACK 20
UBREAK 21
WCS ADDRESS 22
WCS MEM DATA 23

In maintenance mode, the console can specify the next microaddress
by writing into the microstack over the ID bus. If ID LEFT ADDR
5:9 equals 20 (hex) and the ID LEFT WR signal is asserted, the
ustack mux will select data (REC ID 15:00) from the ID bus. Refer
to Figure 2-8. The microstack pointer ‘address is decremented and
then the ID data is written into the stack. The MAINT RTN signal
from the console will enable the picosequencer to select
maintenance mode, providing the INIT condition is not present.
Maintenance return will cause the ustack data to be loaded onto
the NUA bus and will enable the UPC MUX to select the NUA bus as
the source for the next microinstruction. Note that the ustack
register data can also be loaded onto the ID bus when a read
microstack function is indicated by the ID BUS and control lines.

The UPC Break register is also read or written over the ID bus
under console control. When ID LEFT ADDR 5:0 equals 21 (hex) and
the ID LEFT WR signal is asserted, data from the ID bus (REC ID
12:00) is loaded into the Break register. The output of the Break
register (BRK REG 12:00) is routed to a compare network and is
also fed back to the ID bus so the register contents can be read.
The other input (BUF UPC 12:00) to the compare network is the
address of the next microinstruction to be performed. When the
address loaded into Break register matches the address of the next
microinstruction, the comparator will generate a break match (BRK
MAT) signal. The BRK MAT signal will stop the clock if the enable
bit in the console is set. The BRK MAT signal is also routed to
the back panel (SYNC PULSE). 1If the console enable bit is not
set, the SYNC PULSE signal can be used for an oscilloscope sync on
the UPC address specified in the Break register. The console can
use the microsequencer to stop the clock at a specific
microaddress by writing that address over the ID bus and into the
Break register. The console can also force the microsequencer
into a NO-OP cycle by asserting the ROM NOP signal. This signal
will cause the microword registers to be cleared and the abort
cycle signal to be generated.

The two remaining microsequencer registers that are addressable on
the ID bus are WCS Address and WCS Memory Data. These two
registers are used to write data into the Writable Control Store
and are discussed in Paragraph 2.3.8. ‘
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The V bus serial output shift register is also used for
maintenance purposes. A number of microsequencer 1lines are
parallel loaded into the V bus register and then read out
serially. The V bus has 8 serial channels that are selectable.
Channel @ is designated for the microsequencer. The V bus allows
observation of numerous microsequencer conditions provided that
the clock is stopped.

2.3.2.6 Initialize Mode -- Power Up or Power Down cause the Init
signal to be generated. The initialize condition forces the
microsequencer to place a constant microtrap vector (x1668) on the
UPC bus. The value of x, determined by the console, indicates
whether the vector is in PCS (x = @) or WCS (x = 1). During the
init condition, all microsequencer registers are clear except the
V bus, UPCSV, UPC Break and UECO registers.

The microsequencer remains in the initialize mode for one
microcycle after the system INIT level is negated. When power
becomes good, the J and Ben fields of the microinstruction at
vector location x188 will determine the microinstruction address
for start up. ’

2.3.3 Micro Subroutine (USUB) FIELD
The USUB field of the microinstruction will specify a CALL
subroutine, RETURN from subroutine, or a Decision Point Branch.

USUB FIELD
HEX BUS CS.65 BUS CS. 64 . Function
) L L NO-OP
1 L H CALL
2 H L A RETURN
3 H H .DECISION POINT BRANCH

If a CALL subroutine is specified (USUB = 1), the contents of the
UPCSV register are pushed onto the ustack. The saved address will
later be used to form the return address. The microstack pointer
(USP) is decremented prior to push operation.

When the return from subroutine is specified, the UPCSV contents
are popped from the stack and ORed with the J field and branch
condition of the return microinstruction. The result of the OR
condition will specify the correct address of the next
microinstruction past the CALL instruction. The USP |is
incremented after the data is popped from the microstack.
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If the USUB field equals 3, a Decision Point Branch is enabled.
The lower eight bits of the UPC MUX are disabled, thereby allowing
the instruction decode logic to determine UPC bits @7:00 of the
microaddress.

2.3.4 UPC Loop Latch

Each new microaddress is latched for a specific time period to
prevent a false uword parity error. During the critical period,
the UPC MUX tristates are disabled and the UPC Loop Latch Iis
closed. This latching network keeps the UPC 1lines stable and
prevents the control store (CS) bus lines from changing when
parity is being checked. After the critical period the latches
are opened and the UPC MUX is enabled which allows the next
microaddress to be put on the UPC bus.

2.3.5 Microstack Operation

The microstack functions as a Last On/First Off storage-unit. The
data popped from the stack in a read operation will be the same
data which was pushed on the stack in the last write operation.
To perform the correct push/pop sequence, the microstack pointer
(USP 83:008) is decremented before data is written and incremented
after data is read. The conditions which cause the microstack to
be written are a utrap ANDed with NOT STALL, a BUS ID write to the
microstack or the USUB field equal to 1 (CALL). Refer to Figure
2-9. These conditions enable the USTACK DEC and USTACK LOAD
signals. USTACK LOAD causes the microstack pointer to be loaded
into the Current Address register which is clocked at the
beginning of a CPU cycle (T@). USTACK DEC selects the microstack
pointer decremented by 1, and also enables a write into the
microstack. The data is not clocked into the stack until
approximately T125 of the same CPU cycle. Therefore, the
microstack pointer is decremented before data is written onto the
stack. :

A microstack read operation is initiated if MAINT RET is issued by
the console or if the USUB field equals 2 (RETURN). The signals
USTACK INC and USTACK LOAD are generated during the read sequence.
USTACK LOAD causes the Current Address register and USTACK
register to be loaded. Both registers are clocked at T@ which
causes the data to be read from the stack into the USTACK register
before the stack pointer address is incremented. .

Since the microstack can be used to store up to 16 words (16 bits
each), the stack user must keep track of the number of writes
performed in order to read the correct location when a pop
microstack is specified.
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UsSuB=1 (USTACK PUSH) & USTACK DEC
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USUB=2 (USTACK POP)—=1__~

- USTACK INC

USTACL( LOAD

-1 _I_.
CURRENT INC/
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CLK
T USTACK INC
T0
T125
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REC ID 15:00 — WE CLK
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UPCSV 12:00— CLK
USTACK t 1]
MUX USP 03:00 TO

TK-0240

Figure 2-9 Microstack Operation
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2.3.6 Control Store Configuration .

Three slots in the processor backplane are dedicated for control
store modules. The maximum control store allowed is 8K 99-bit
words. The standard configuration (using two slots) will contain
4K of PROM Control Store (PCS) and 1K of Writable Control Store
(WCS) . Optional configurations can use the third slot for an
additional 1K of WCS. Refer to Figure 2-10.

SLOT 22 4K PCS LOWER 4K BANKS 4K PCS
SLOT 20 1K WCS ) 1K WCS
UPPER 4K BANKS
SLOT 18 NOT USED 1K wWCS
STANDARD CONFIGURATION OPTIONAL CONFIGURATION

TK-0241

Figure 2-10 Control Store Configuration

Each backplane slot contains jumpers (J5. through J1l) which are
used to enable or disable 1lK banks of control store. Jumper J5
will enable either the upper or lower 4K group. Jumpers J4
through J1 enable specific banks within the 4K group. Table 2-4
shows the correspondence between jumper placement and bank
selected. The modules can be interchanged within the three slots
since the jumpers are on the backplane and can be connected
accordingly.
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Table 2-4 Control Store Bank Selection

Bank Jumper Connection
Selected | J5(PCS)| JS(WCS) | J4 J3 J2 J1
1K IN ouT IN IN IN OUT
2K IN ouT IN IN OuT IN
3K IN ouT IN ouT IN IN
4K | IN ouT ouT IN IN IN
5K ouT IN IN IN IN OUT
6K ouT IN IN IN ouT IN
7K our | IN IN our | IN IN
8K ouT IN ouT IN IN IN

2.3.7 PROM Control Store (PCS)

The standard PROM Control Store contains 4K 99-bit words. The
99-bit control word (microword) is comprised of 96 data bits and
three parity bits (1 for each 32-bit segment). Refer to Figure
2-11.
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Each microword is addressed by BUS UPC bits 12:00. These lines are
generated by the microsequencer or the instruction decode 1logic
(during a decision point branch). BUS UPC bits 12:01 enable a
specific 1K bank of control store and the CS bus drivers if the
UPC lines match the corresponding address jumpers. BUS UPC 12
addresses either the lower 4K bank (PCS) or the upper 4K bank (WCS
and optional control store). Bits 1l and 10 determine which 1K
bank of the 4K group is enabled. BUS UPC 09:00 address each
microword in the 1K bank selected.

Parity is checked on each microword that is read from the PCS. One
parity bit corresponds to each 32 bit section of the 96 bit
microword. The parity bit is used to make an even number of ones
in the 33 bit field (1 parity and 32 data). If the parity checkers
detect an odd number of ones in any 33 bit field, a control store
parity error is sent to the Interrupt Control logic, resulting in
a microtrap.

NOTE
The PCS parity checkers are also used to
detect parity errors in the Writable
Control Store.

2.3.8 Writable Control Store (WCS)

The standard Writable Control Store contains 1K 99-bit words. As
in the PCS, each microword contains 96 data bits and 3 parity .
bits. Refer to Figure 2-12.

The WCS is addressed in the same manner as the PCS during read
operations. BUS UPC bits 12:10 enable the CS bus drivers if the
UPC lines match to corresponding address jumpers. The chip enable
for this 1K control store is always turned on. BUS UPC bits ©09:00
address each microword in the 1K WCS.

During write operations, both the address and data to be written
into WCS are generated by the console and transferred over the ID
bus. Data must be written into WCS in three 32 bit segments since
the ID bus is only 32 bits wide and the microword is 96 bits. The
address generated in the console is transferred to the WCS Address
register in the microsequencer. Refer to Figure 2-8.

The WCS address register consists of a 13 bit address counter, a
modulo 3 counter, and a parity invert bit. This register is loaded
from the ID bus when ID LEFT ADDR 05:00 equals 22 (hex) and the ID
LEFT WR signal is asserted. The parity invert bit is not part of
the WCS address counter. This bit is used for diagnostic purposes
to generate odd parity and force a parity error microtrap. The
signal WCS PAR INV is sent from the microsequencer to the parity
generator in the WCS. Refer to Figure 2-12. WCS PAR INV controls
whether even or odd parity is generated for each 32 bit segment
written. The normal parity written is even.
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The WCS Address and Modulo 3 counters (Figure 2-14) generate the
address of the microword and the specific 32 bit section of the
microword to be written. The Modulo 3 counter generates the lines
which enable each 32 bit segment. The following shows the

relationship between the value of the Modulo 3 counter bits and
the segment written.

Modulo 3 Counter
Bit 14 Bit 13 Microword Segment Written

0 " Bits 31:00
] 1 Bits 63:32
1 0 Bits 95:64
1 1

WCS Write Inhibited and
WCS Address Increment Inhibited

The counter can be loaded with 11 but nothing will be written.
Normal incrementation of the counter will result in the following
sequence: 00,01,10,00 (refer to Figure 2-13). At the end of each
WCS write data command, the counter is incremented. When the
Modulo 3 counter overflows (from 10 to 00), the WCS Address

counter is incremented, thereby specifying the next microword
address.
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TK-0244

Figure 2-13 1Incrementation of Modulo 3 Counter

DI —
[

1D BUS

XCEIV
REC 1D 12:00 REC ID 14:13
WCS ADDRESS l MODULO 3
COUNTER COUNTER
* D—. CS WR (95:64
1 —
Y 1200 WCS ADRS 14:13 wces _
WCS AD : = WRITE > ,
ENABLE | 3—. CS WR (63.32)
_:}. CS WR (31:00
ID LEFT ADRS=23 ' '

(WCS MEM DATA) — )
ID LEFT WR —®

Figure 2-14 WCS Address Counter and Modulo 3 Counter

TK-0248
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As previously mentioned, the address counters and parity invert
bits are loaded when the ID register address equals 22 (hex) and
an ID LEFT write operation was specified. The actual data to be
written is received from the ID bus (refer to Figure 2-8) when ID
LEFT ADDR = 23 (WCS MEM AVAIL) and ID LEFT WR is asserted. These
conditions will also generate the microsequencer signal WCS WR
CYCLE which is used to inhibit the CS drivers in the Writable
Control Store. Reading of the WCS is thereby prevented if a write
operation is in progress.

The address bits WCS ADRS 12:00 are used for write operations in a
manner similar to BUS UPC bits 12:080 in a read operation. However,
WCS ADRS bits 12:16 inhibit the CS bus drivers if the address
lines match. the corresponding jumpers, unlike BUS UPC bits 12:10
which enable the drivers. WCS ADRS bits @9:080 address the specific
microword in the 1K WCS.

The jumpered address of the WCS module can be read over the ID bus
if an ID bus read of the WCS Memory Data Register is performed.
This operation causes the microsequencer to generate a signal
which enables the board select lines (BD SEL 07:00) onto the ID
bus.

2.4 INSTRUCTION BUFFER .
The instruction buffer logic consists of an 8-byte register,
shifters and multiplexers which enable the central processor to
fetch instructions for evaluation. Refer to the instruction buffer
block diagram (Figure 2-15). The structure of the instruction
buffer allows prefetching of instruction stream data. The new data
can be stored in the buffer register while the current instruction
is being executed. Prefetching of instructions increases the
efficiency of the system by reducing the time required to access
new instruction data once the current data has been evaluated. The
op code of each instruction is kept in byte @ of the buffer
register while operand specifiers are being evaluated. As the
specifiers are evaluated, they are removed from the buffer
register along with associated data and replaced with new operand
specifiers. This process continues until the instruction can be
executed. The current op code is then removed and replaced by the
op code of the next instruction. Instructions which consist of an
op code only (e.g., NOP) can be executed immediately since no
specifiers must be evaluated.

The VAX-11/7808 has the capability of operating in two instruction
modes, native and compatibility. In compatibility mode, a subset
of 16-bit, PDP-11 instruction can be executed. Native mode enables
the execution of variable length VAX-ll instructions. Instructions
are stored in contiguous byte locations in memory and are aligned
on byte boundaries. The contiguous bytes of instructions are
referred to as the instruction stream.

The .instruction stream is transferred to the.buffer over the
Memory Data (MD) bus. Data loaded into the lower byte locations of
the buffer can be evaluated while additional bytes of data are
fetched from memory, thereby increasing overall performance.
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The PDP-11 instructions are 1l6-bits and occupy two contigquous
bytes. Refer to Paragraph 1.7 for a description of PDP-11
instructions which can be executed.

The format of the variable 1length VAX-ll instruction is
illustrated in Figure 2-16. .

OPERAND IMMEDIATE OPERAND SPECIFIER OPERAND OPCODE
SPECIFIER N DATA SPECIFIER 2 | EXTENSION | SPECIFIER 1 | 1'0R 2 gyTES)
(10R2BYTES)| _ |(1.2 4 OR8BYTES)| (1 OR 2 BYTES)| (1 TO 6 BYTES)| (1 OR 2 BYTES)

TK0283

Figure 2-16 General Format of VAX-1ll Instruction

The presently available instruction set uses a one byte operation
code (op code). An instruction may consist of an op code alone or
may consist of an op code and multiple operand specifiers. The
operand specifier indicates the manner (addressing mode) in which
the operand is to be accessed. Certain addressing modes require an
extension to be appended to the operand specifier. The specifier
extension can be used as a displacement or can be immediate data.
Immediate denotes that the data or address immediately follows the
operand specifier.

The variable length and format of the VAX-1ll instructions require
that the buffer be able to shift and align instruction stream
data. The first byte of the instruction (op code) must be loaded
into byte @ of the buffer register before instruction decode can
begin. The operand specifier to be evaluated must be 1loaded in
byte 1 of the register. The memory data byte shifter ensures that
information read from the MD bus is loaded in to the register in
the correct byte positions. As operand specifiers are evaluated,
bytes of data are read or cleared from the buffer. The shift
multiplexers (SHF MUX) enable data from the higher order bytes of
the buffer to be shifted into the vacant positions allowing
further evaluation. The Input Multiplexer (IMUX) determines
whether the buffer register will receive data from the memory data
byte shifter or from the shifter multiplexer. Each byte of the
buffer register has an associated valid bit which when set
indicates that the byte has been loaded with valid data. Each IMUX
is controlled independently by the valid bit associated with the
SHF MUX input. .

When a byte is cleared from the buffer, the shift multiplexer
selects the data and the valid bit from the higher order byte
which is to be loaded into the vacant position. If the valid bit
is set in the byte selected by the SHF MUX, the IMUX will load
that data into the vacant byte location. If the valid bit is not
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set, the SHF MUX has selected an invalid byte and the IMUX will
load data from the memory data byte shifter. The capability of
storing information in the upper bytes of the buffer register
allows prefetching of instruction stream data. While the 1lower
bytes of the register are being evaluated, new data can be fetched
from memory. This data is then available and can be shifted into
the lower byte locations when required.

The instruction buffer also provides the <capability of
transferring displacement or literal data to other sections of the
CPU via the Internal Data (ID) bus. The data multiplexer (DMX)
selects bytes from the buffer register to be transferred over the
ID bus. The DMX can sign extend or shift the data before it is
enabled onto the bus. .

The following paragraphs provide a more detailed explanation of
each functional area of the instruction buffer logic in relation
to overall operation.

2.4.1 Memory Data Byte Shifter (MD Byte Shifter)

Instructions stored in memory are byte aligned; i.e., an
instruction can begin or end on any byte boundary. However,
because memory is longword aligned, all instruction stream data
read from memory is referenced on longword boundaries. The memory
data byte shifter will always receive four bytes of longword
.aligned data from the memory data (MD) bus. The memory data must
be rotated so that the desired information is loaded into the
correct register byte. The positioning of the bytes is determined
by the low two bits of the instruction address (IBA @ and IBA 1).
These bits specify a particular byte within a longword. The
relationship between the byte address and format of the shifted.
data is shown in Table 2-5.

Table 2-5 Memory Data Shift Format

Byte Address Bits MD Shifter Output
IBA 1 IBA 8 Yo Y1l Y2 Y3
2 2 . ‘ Byte 3 Byte 2 Byte 1 Byte @
) 1 Byte @ Byte 3 Byte 2- Byte 1
1 "} Byte 1 Byte 8 Byte 3 Byte 2
1 1 Byte 2 Byte 1 Byte @ Byte 3
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The function of the MD byte shifter can be illustrated by the
following example. Assume instruction stream data is stored in
the memory byte 1locations listed, and a program branched to
location CHECK.

Memory Address I-Stream Data

(Byte Locations) (Hex Code) Assembler Notation
203 co ADDL #29,R2

204 P9

205 | 52

206 D1 CHECK : CMPL (R2),R4
207 62

208 54

The program branch would result in the instruction buffer address
equal to 20@6. Since the memory reference will always be on a
longword boundary, the lower two bits (IBA 1 and IBA @) of the
instruction buffer address are ignored by memory. The fetch from
memory would result in the MD byte shifter being loaded with four
bytes of data beginning at longword boundary 2804. The MD byte
shifter will position the data so that byte @ of the buffer
register will be loaded with the contents of byte location 206.
The memory data will be shifted as shown in Figure 2-17.

P P O

IBA 1—> T v Ty IBA1 IBAO
MD BYTE SHIFTER ~—5— 55—
1BA 0 52.09,62101\ 3 0
ALIGNMENT OF MEMORY DATA
Yo vy ¥
< 62 D1 52 09 >MDBUS BYTE1 BYTEO BYTE3 BYTE2
BYTE3 | BYTE1 | NOTE
BYTE 2 BYTE 0 V INDICATES VALID BIT SET.

TK-0284

Figure 2-17 Memory Data Shift Example

An expanded example of loading data from the MD bus is provided in
Paragraph 2.4.5
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2.4.2 Buffer Register

The buffer register consists of eight 9-bit bytes, designated as
byte 7 through byte #. Byte @ is loaded with data read from the
lowest memory address and byte 7 is 1loaded from the highest
address. <

In native mode, the op code of an instruction must always be
loaded in byte 0 to be decoded and the operand specifier must be
in byte 1 to be evaluated. Bytes 2 through 7 can contain literal
or displacement data associated with the specifier in byte 1, or
these bytes can contain other instruction stream data (e.g., the
next specifier, next op code, etc.).

In compatibility mode, the 16-bit PDP-11 instruction is loaded
into bytes 6 and 1 of the buffer register. Bytes 2 and 3 can
contain literal data associated with the current instruction
(e.g., data used in index mode) or can contain the next
instruction. Bytes 3 through 7 can also be 1loaded with new
instructions while the current instruction is being executed.

2.4.2.1 valid Bits -- Each byte of the buffer register contains
eight data bits and one valid bit. The valid bit, when set,
indicates that useful data has been loaded into the associated
byte. Valid data can be loaded through the IMUX from the shift
multiplexer (SHF MUX). When the SHF MUX is selected as the input
to a particular byte, its associated valid bit is loaded into the
register byte with the data. 1If the MD byte shifter is selected
as the input source, the valid bit can be set depending on the
value of address bits IBA 1 and IBA 0 and whether or not the lower
bytes in the register have valid data. Paragraph 2.4.5 provides
an example of loading the buffer register and illustrates when the
valid bits are set.

The buffer register holds the instruction stream data while the
op code is decoded and specifiers are being evaluated. The op
code of an instruction indicates how many specifier evaluations
must be performed and each specifier indicates how much literal or
displacement data will follow. The register bytes are changed as
literal and displacement data is loaded on the Internal Data bus
and as instruction execution is completed. The moving of bytes
within the buffer register is controlled by the UIBC field of the
microword. _

2.4.3 shift Multiplexer (SHF MUX)

As instruction stream data is evaluated, contents of the upper
register bytes are shifted into the lower byte locations. The
shift multiplexers are configured to allow shifting of the 9-bit
bytes by 0, 1, 2, or 4 positions to the right each microcycle.
The SHF MUX data is transferred to the buffer register through the
input multiplexer (IMUX). If the valid bit for a particular SHF
MUX is set, that shift data will be selected by the IMUX and
stored in the buffer register. The shift multiplexers are
controlled by the UIBC field (BUS CS 95:92) of the
microinstruction. Table 2-6 shows the relationship between the
UIBC field value and the function selected. The entire buffer
register is clocked at the beginning of every microcycle.
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Table

2-6 Microword Control of Instruction Buffer

UIBC Field
(Hex Value)

Function

Comment

8-B

NOP

STOP

FLUSH

START

CLR 0, 1

CLR 2, 3

Reserved
READ
BDEST
Reserved

CLR 0

CLR 1

long 1literals.
-operand specifier

Shift by @. Does not affect shift mux
or data input to IMUX.

Prevents further memory requests by
instruction buffer.

Clears all wvalid bits of buffer
register. Used for conditions which
cause a change in PC (e.g., jump or
branch). The VIBA register (in the
data path) 1is also loaded when this
field value is specified.

Enables prefetch operations by the
instruction buffer.

In compatibility mode, the next
instruction 1is shifted over the
current instruction in bytes & and 1.
This function is performed in native
mode to optimize short 1literal to
register and register to register
transfers and also to execute 16-bit
branch destinations.

In compatibility mode, 16-bit
displacement or literal data contained
in bytes 2 and 3 are shifted over with
new data.

Used during ACBX, AOB, SOB and Branch
on Bit instructions to indicate branch
displacement specifiers.

In native mode, the current op code in
byte @ is shifted over with the next
op code.

In native mode, the operand specifier
in byte 1 is shifted over with new
data. This function is performed for
instructions using displacement mode
addressing, absolute addressing or
In these modes, the
is the 1last byte
removed from the register during

operand evaluation.
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Table 2-6 Microword Control of Instruction Buffer (Continued)

UIBC Field

(Hex Value) Function Comment

E CLR 0,1,2,3 This function is performed in
compatibility mode to optimize
instructions which execute 1literal
data to register transfers.

F CLR 1-5 This function is performed in native

Conditional mode to remove long literals,
displacement data, or specifiers from
the buffer register. The op code
and/or specifier evaluation will
indicate if the data is 8, 16, or 32
bits. In addressing modes that do not
have instruction stream data other
than the specifier, the specifier
itself is cleared from the buffer
register.

Lower bytes of the buffer register are actually changed when data
is shifted over a byte location. The UIBC field controls the data
selection of the shift multiplexers and effectively controls which
byte locations will be written over. Instruction execution
results in lower byte locations being removed by the shifting in
of new data. As indicated from the comments in Table 2-6, the
bytes which are cleared depend on the instruction mode, op code,
specifier, and context.

2.4.4 Data Multiplexer (DMX)

The data multiplexer (Figure 2-18) provides the capability of
transferring the contents of the buffer register to other areas of
the CPU via the Internal Data (ID) bus. The DMX selects bytes
from the buffer register and can sign extend or shift the data if
required. This capability enables the evaluation of displacement
and literal specifiers to be optimized by allowing the direct
transfer of information from the buffer register. The data read
onto the ID bus is transferred to the Q register of the data path
and can then be transferred from the data path to a specified
destination. Refer to Paragraph 1.8.1.4 for an explanation of the
ID bus. The DMX is selected as the source of ID bus data if the
address lines (ID RIGHT ADDR 5:0) specify the DMX (hex address =
#0) and the control line ID RIGHT WRITE L is not asserted.

Selection of data by the DMX -requires that the op code and
specifier of the instruction first be decoded. The following
shows the relationship between the addressing modes of VAX
instructions and the data transferred onto the ID bus.
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General Addressing Modes ID Bus Data

Short Literal (Note 1) Bl = 97:00
Indexed N/A

Register - N/A

Register defer;ed N/A
Autoincrement (R = PC) B5:B2 = 31:00
Autoincrement deferred B5:B2 = 31:00
(R = PC)

Byte displacement B2 = 07:00
Byte displacement deferred B2 = 97:00
Word displacement .83,82 = 15:00
Word displacement deferred B3,B2 = 15:00
Longword displacement B5:B2 = 31:00
Longword displacement B5:B2 = 31:00
deferred

Branch Addressing Modes ID Bus Data
8-bit byte displacement Bl = @g7:00
16-bit word displacement B2,Bl = 15:ﬂﬁ
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Comment

Zero

Ex tended

l, 2, or 4 bytes

depending on context,

sign

32 bit address

éign
Sign
Sign

Sign

extended

extended

extended

extended

ex tended

Comment

on
on
on

on

bit 87

bit @87

bit 15

bit 15

Sign extended on bit 87

Sign extended on bit 15




NOTE 1

If the operand is a floating data type,
the short 1literal is in the format

shown in Figure 2-19.

EXP FRA

TRO0294

. Figure 2-19 Floating-Point Short

Literal

The DMX formats the data as shown in

Figure 2-20.

ID BUS
31 15 14 13

10 09

04 03 00

ZEROS 1

ZEROS

DATA

ZEROS

Figure 2-2¢0 DMX Format of Floating-

Point Short Lite

ral

TK-0295

If the system is operating in compatibility mode, thé DMX will
select data from the buffer register for the following PDP-11

instructions:

a. Instructions which are followed by 16-bit displacement or
16-bit literal data. The information is stored in the

buffer register as shown in Figure 2-21.

BUFFER REGISTER |NSTRUCTION

16-BIT

716|854 |3|2|1]0
16-BIT DISPLACEMENT
OR
16-BIT LITERAL
Tx0208

Figure 2-21 Format of PDP-1l Instruction in Buffer Register
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The DMX selects the data from bytes 2 and 3 of the registers to be
transferred onto the ID bus. The DMX shifts these bytes so that
they are transferred as ID bits 15:00, sign extended on bit 15.

b. Branch instructions which are stored in the buffer
register as shown in Figure 2-22,

BUFFER REGISTER 8-BIT BRANCH
DISPLACEMENT

S
716|5|4|3|2]|]1]0

Y
BRANCH
OPCODE

TK-0297

Figure 2-22 Format of Branch’ Instruction in Buffer Register
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The DMX will select the branch displacement from byte @, 1left
shift the data by one bit and sign extend the data on bit 7.

The DMX decreases execution time by optimizing the format of
certain addressing modes in both VAX-1ll and PDP-ll instructions.
Once the op code and specifier have been decoded, the DMX can sort
out instruction stream data from the buffer register and arrange
it in a usable form. This hardware capability increases overall
system performance.

2.4.5 Loading the Instruction Buffer

This section provides an example of loading an instruction (ADDL
#09,R2) into the instruction buffer from memory. Assume the
following program is in the memory locations indicated:

Memory. Address
(Byte locations) Hex Code Assembler Notation

200 DO MOVL (R3), (R4)+

201 63

202 84

203 Cco ADDL $#09,R2

204 29

205 52

206 D1 CMPL (R2), R4

207 62

208 : 54 _

209 13 . BEQL, DONE

20A @5

20B g1 NOP

20C 90 MOVB (R7), RS

20D 67 '

20E 58

20F B4 _ CLRW R4
Contents

Longword memory address 200/CP 84 63 D@
204/62 D1 52 09
208/01 5 13 54
20C/B4 58 67 90

As previously mentioned, the op code of the instruction must be
loaded into byte @ of the buffer register to be decoded. The
instruction in this example (ADDL #09,R2) does not begin on a
longword boundary. Therefore, in order to load the op code into
byte @8 of the buffer register, the MD byte shifter will have to
align the memory data received.

The instruction buffer address (IBA) will equal 2063, however, the
low two address bits (IBA 1 and IBA 0) are ignored when a memory
reference is made. References to memory can be made on longword
boundaries only. The first memory fetch will load four bytes of
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data into the MD byte shifter and will be read from memory address
200. The MD byte shifter will align the data so that the op code
(C@) is loaded into byte @ of the buffer register. The alignment
of memory data is controlled by the low two bits of the
instruction buffer address. The data is loaded into the buffer
register as illustrated in Figure 2-23. To simplify the diagram,
only the buffer register and MD byte shifter are shown.

BUFFER REGISTER
BYTE 7 BYTEG6 BYTES BYTE4 BYTE3 BYTE2 BYTE 1 BYTEO

84 63 Do co 84 63 Do co V INDICATES

VALID BIT SET.
K 3B [ S f ) b
YO Y1 v2 Y3
) 1 1) ]
—
IBA1 84 63 Do co \Ao BYTE SHIFTER IBA1 IBAO
IBA 0 — | 1 L 1 1 1
[ 4
ALIGNMENT OF MEMORY DATA
co 84 63 Do MD BUS Yo vi Y2 Y3
BYTES BYTE2 BYTET BYTED BYTE 2 BYTE 1 BYTEO BYTE3

TK-0289

Figure 2-23 Result of First Memory Fetch
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The setting of each valid bit depends on whether or not the lower
byte locations contain valid data and also depends on the value of
the low two bits of the instruction buffer address. After the
first fetch, the instruction buffer address is incremented by
four.

Since the instruction began on the last byte of a longword, only
byte @ of the buffer register was loaded with valid data. The
remaining bytes of data are loaded into the buffer register but
the associated valid bits are not set. Setting the valid bit in
byte 0 will prevent it from being written over during the next
memory fetch. :

The instruction buffer address will equal 207 after
incrementation. The value of the low two address bits remains the
same. Adding four to the VIBA register increments the address by a
longword and does not affect the byte position. The second memory
fetch will load four bytes of data beginning at longword boundary
204. The MD byte shifter will align the data exactly as it did in
the first fetch because bits IBA 1 and IBA @ are at the same
value. Figure 2-24 shows the result of the second fetch.

BUFFER REGISTER
BYTE 7 BYTE6 BYTES BYTE4 BYTE3 BYTE2 BYTE 1 BYTEO

v \ "} v v
o1 | s2 | oo |'e | D1 | s2 | oo |'CO |VAUDEITseT
¥ ¥ § ¥ ) [
YO Y1 Y2 Y3

IBA 1 ) ] I L

D1 52 09 62 \40 BYTE SHIFTER IBA1 IBAO
IBA 0— : . . : -

I ] I ALIGNMENT OF MEMORY DATA

62 D1 52 09 MD BUS Yo n Y2 v3 -

SYTE3 BYTE 2 BYTE T BYTEO BYTE2 BYTE1 BYTEQ BYTE3

TK0290

- Figure 2-24 Result of Second Memory Fetch

2-51




Byte @ was not written with memory data because its valid bit was
set as a result of the first fetch. The IMX for byte @ (refer to
Figure 2-15) selects data from the SHF MUX rather than from the MD
byte shifter. The SHF MUX data will be the same as the current
contents of byte @ since a shifter by zero (UIBC field = @) was
performed. The number of valid bytes loaded from the first fetch
depends on the instruction buffer byte address. The second fetch
will always load four bytes of valid data.

After the second fetch, the instruction buffer has all the data
required for the execution of the instruction ADDL #09,R2.

At instruction decode time (microcode IRD state), the literal data
. (89) in register byte 1 is selected by the DMX and transferred to
the Q register of the data path (via the ID bus). This transfer
leaves byte 1 vacant. At the end of IRD state, a shift by 1 will
be performed and valid data will be stored in the buffer register
as shown in Figure 2-25,

BUFFER REGISTER
BYTE 7 BYTE6 BYTES BYTE 4 BYTE3 BYTE2 BYTE 1 BYTEO

y » " V INDICATES
62 D1 52 |Yco |vaLiD BIT SET

. TR-0287

Figure 2-25 Buffer Register After Shift by 1 Byte

Byte @ (op code) remains the same since its valid bit is still
set. Bytes 1, 2, and 3 are 1loaded with data from the shift
multiplexers. The SHF MUX inputs contain data and valid bits from
the next higher byte 1location. Note that the valid bits are
shifted with the data from the higher byte locations. Bytes 4
through 7 contain invalid data.

The low two address bits (IBA 1 and IBA @) are incremented by one
since the data in the buffer register has moved by one byte
position. The low two address bits keep track of the end of the
buffer and are incremented independently of address bits 31:02.°
The instruction buffer 1longword address (31:02) was also
incremented after the last memory fetch, resulting in the address
equal to 208 (204 plus 4). The next memory fetch will begin at
longword boundary 208. The data will not be rotated because IBA
bits 1 and @ are both equal to zero. Figure 2-26 illustrates the
result of the third memory fetch.
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BUFFER REGISTER
BYTE 7 BYTEG6 BYTES BYTE4 BYTE3 BYTE2 BYTE1 BYTEO

v v
o1 |Yos |Vis |Vsa |Ve2 |Vor |Vs2 |Veo |VANRSN SR

¥ 3 3 s T

YO Y1 Y2 Y3
T T T T IBA1 IBAO
IBA 1—% 01 05 13 54 MD BYTE SHIFTER —6—1 -—6—
IBA 0— 1 1 1 1 .
[ [} s s ALIGNMENT OF MEMORY DATA
YO Y1 Y2 Y3
BYTE 3 BYTE 2 BYTE 1 BYTEO
01 - 05 13 54 MD BUS

BYTE3 BYTE2 BYTE1 BYTEO

TK-0288

Figure 2-26 Result of Third Memory Fetch
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The valid bit in byte 7 is set as a result of the third memory
fetch. This condition inhibits the instruction buffer address from
being incremented by 4. The address is not incremented until data
is shifted out and the valid bit in byte 7 is cleared.

At the next fork entry in the microcode (A FORK), byte @ (op code)
and byte 1 (operand specifier) of the buffer register are removed.
The microcode will specify a shift by 2 bytes, resulting in valid
data being stored as shown in Figure 2-27.

BUFFER REGISTER
BYTE7 BYTE6 BYTES BYTE4 BYTES3 BYTE2 BYTE1 BYTEO

v v v v v v V INDICATES
01 05 13 54 62 D1 | vALID BIT SET

TX-0286

~Figure 2-27 Buffer Register After Shift by 2 Bytes

Bytes @ through 5 are loaded with data from the shift multiplexers
and the valid bits in byte 6 and 7 are cleared when the data is
shifted out. -

The instruction buffer longword address (31:02) is incremented by
4 because the buffer register successfully fetched data during the
previous cycle and the valid bit in byte 7 is not clear. Two is
also -added to the byte address (0l1:00) since two bytes of data
were cleared from the buffer register.

The fourth memory fetch will load data from longword address 20C.

The data will be rotated since the low two address bits now equal
two. Figure 2-28 illustrates the result of the fourth fetch.
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BUFFER REGISTER
BYTE 7 BYTE 6 BYTES BYTE4 BYTE3 BYTE 2 BYTE 1 BYTEO

v v \ v v v v v V INDICATES
7 90 01 05
6 13 54 62 D1 |vauD BIT SET

A S S S

vo |vi_ vz |v3
I i | I
IBAT—" % B4 58 MD BYTE SHIFTER 1BA1 IBA O
IBA O ] ] 1 1 1 0
ALIGNMENT OF MEMORY DATA
Yo Yyi Y2 Y3
B4 58 67 90 MD BUS BYTE1 BYTEO BYTE3 BYTE2

BYTE3 BYTE2 BYTE 1 BYTEO

TK-0285

Figure 2-28 Result of Fourth Memory Fetch
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Note that the instruction CMPL (R2), R4 could have been executed
without the fourth memory fetch. The instruction buffer contained
all the required information when the data was shifted by two
bytes (refer to Figure 2-27).

2.4.6 Register Addresses
During specifier evaluations, the instruction buffer provides the
address source for the scratch pad register sets in the data path

(refer to Figure 2-29). The address 1lines generated by the
instruction buffer logic are:

a. -SPl ADR 03:00 (Specifier 1 Register)

b. PRN ADR 03:00 (Previous Register Number)
C. SP2 ADR 03:00 (Specifier 2 Register)

BUF BO 7:6, B1-0 ,\

SP1
MUX —

PRN  |PRN ADR3:0
LATCH —

BUF B13:.0 |SEL
-

/T/ SP1 ADR 3:0
p
TO DATA

VAX ' > PATH

BUF B0 3:0 .\

SP2
MUX SP2 ADR 3:0

o

BUF B23:0 |sgL

VAX

TK-0291

Figure 2-29 Register Addresses
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The input selection of the specifier multiplexers depends on the
mode of operation, native (VAX) or compatibility (PDP-1ll).

In native mode, SPl is the register number of the operand
specifier (source register) currently being evaluated in byte 1 of
the buffer register. If the operation is a short 1literal to
register or register to register transfer, SP2 will be the
register number of the operand specifier (destination register) in
byte 2 of the buffer register. Refer to Figure 2-30. The specifier
1 register number can also be held in the PRN (Previous Register
Number) latch to be used as the scratch pad address source.

INSTRUCTION BUFFER REGISTER

j¢———————— BYTE 2 ol BYTE1 — &
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
SP2 SP1 ‘

TR-0292

Figure 2-30 Register Fields in VAX Instructions
In compatibility mode, the value of SPl is determined by the

source register field of the instruction and SP2 is determined by
the destination register field. Refer to Figure 2-31.

INSTRUCTION BUFFER REGISTER

f— BYTE 1 > BYTE 0 ——————]
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0.
SRC DST

TX-0293

Figure 2-31 Register Fields in PDP-1ll Instructions
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2.4.7 Program Counter (PC) Updates

The program counter in the data path holds the address of the
instruction's op code each time a new execution sequence is
started. As operand specifiers are evaluated, the instruction
buffer logic generates a three bit number (DELTA PC ©2:00) which
is added to the low order bits of the PC register. This value
effectively causes the PC to point beyond the instruction byte
evaluated.

In native mode, the PC update value will reflect the specifier and
any additional bytes of 1literal or displacement data associated
with the specifier. The following lists the addressing modes which
require additional data and the length number which is added to
the PC.

Addressing Mode Length Number

Autoincrement (R = PC) 1, 2, or 4 bytes depending on
context

Autoincrement deferred (R = PC) 4 bytes

Byte displacement 1 byte

Byte displacement deferred 1 byte

Word displacement 2 bytes

Word displacement deferred 2 bytes

Longword displacement 4 bytes

Longword displacement deferred 4 bytes

The complete number added to the PC will include the length number
for the addressing mode plus one for the specifier. The hardware

capability of providing the PC update value eliminates an extra
microinstruction in the flow. Note that the updates for the op

code must be handled separately by the microcode.

In compatibility mode, the hardware determines the addressing mode
and whether or not an address calculation is required. If the data
following the current instruction is required for execution, the
number two is added to the PC.

The PC update number is zero for the following conditions:
a. A fault is detected (e.g., error, TB miss, or stall)
b. Instruction consists of a single byte op code

C. Decision point entry is to an execution flow
d. First part done flag is set
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2.5 INSTRUCTION DECODE

Instruction stream data stored in buffer register bytes 1 and @ is
decoded by the use of ROMS and combinational 1logic. Refer to
Figure 2-32. The instruction decode logic provides the source for
the lower eight bits (BUS UPC 67:80) of the next microaddress when
the microprogram reaches a decision point fork. A decision point
fork is specified if the Subroutine (USUB) field of the current
microword equal 3 (CALL 3). The microsequencer (refer to Paragraph
2.3) disables the normal source of the lower address bits and
enables the UPC ADRS MUX of the instruction decode 1logic.
Therefore, each time a decision point fork is reached, the decoded
instruction provides an entry point in the microprogram. The
microprogram will either enter a flow which evaluates an operand
specifier or enter an execution flow unique to the current
instruction. If an error or service condition is present during a
decision point fork, the UPC ADRS MUX selects the service input.
The entry point in the microprogram will be to a specific routine
which handles the current problem.

2.5.1 VAX Control Word

The output of the VAX Decode ROM and Context ROM form a 12 bit
control word which determines the execution point entries
generated for VAX instructions. The control word is divided into
fields as shown in Figure 2-33. The Mode field enables the mode
multiplexer (Paragraph 2.5.2) to select either the specifier
decode 1logic or the VAX decode ROM as the source for the
microaddress bits.
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Mode Field

VAX Decode bits
85 24 Operation

) 2 Select Specifier —-- enables the specifier decode
logic. The address bits generated will depend on
the addressing mode of the specifier. Paragraph
2.5.3 provides a list of addresses generated by
the specifier decode logic.

) 1 Execute if R Mode =-- enables either the
specifier decode logic or the vAX Decode ROM. If
the specifier in byte 1 of the instruction
buffer is in register mode, the one's complement
of VAX Decode bits 07:00 are selected as the
source for the microaddress bits. If the
specifier in byte 1 is not in register mode, the
specifier decode logic is selected.

1 g Optimized -- enables the specifier decode logic
and modifies the specifier address if a short
literal to register or register to register
operation is being performed. If the optimized
conditions are not met, the specifier address is
not modified.

1 1 Select Execute -- enables the one's complement
of VAX Decode bits ©87:00 as the source for the
microaddress bits. :

The address field of the VAX Control Word is used only when the
mode field specifies Execute if R Mode or Select Execute
operation. If an execute address is being generated, all eight
bits of the VAX Decode ROM (VAX DECODE @7:80) are one's complement
and selected as the source of the low eight microaddress bits. The
four bits of the address field provide a l6-way branch for each
mode and access combination specified.

The access field of the control word is used to select the branch
decode logic or to indicate the type of transfer (read, write, or
modify) specified by the instruction at each execution point. If
the mode field equals 1 or 3 (Execute), the access field (VAX
DECODE @7:86) is used to form the execution address.

-
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Figure 2-33 VAX Control Word
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Access Field

VAX Decode Bits
87 @6 Operation

2 2 Branch -- enables the Branch decode 1logic at
execution point 2zero. At any other execution
point, this code can only be used to form the
execution address.

2 1 Read -- indicates the performance of a write
operation from cache to the D register of the
data path.

1 0 Write =-- indicates the performance of a write

operation from the D register to cache.

1 1 Modify -= indicates a read-modify-write
operation. This code informs the translation
buffer that the operation is a read with a write
check.

The Context ROM provides information as to the length and type of
operand, shown as follows:

Context Bits Context Bits
83 92 Length gl g9 Type

2 2 Byte 2 e Integer
"] 1 Word 2 1 Float

1 2 Long 1 ) VSRC

1l 1 Quad 1 1 ASRC

The ASRC code is specified for instructions that require the
calculated effective address to be used as the operand. Since the
operand is of address access type, register mode may not be
designated.

The VSRC code 1is used only with field instructions and |is
specified when the calculated effective address is used as the
operand. In field instructions, register mode may be designated.in
operand specifiers of address access type.
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The following shows the 1length and type combinations used to
specify operand data types.

Length Type Use

Byte Integer Byte data type

Word Integer Word data type

Long Integer Longword data type

Quad Integer Quadword data type

Byte Float Undefined

Word Float Undefined

Long Float Floating data type

Quad Float. Double-Floating data type

2.5.1.1 Execution Point Counter -- The execution point counter
(Figure 2-34) determines the number of decision point forks that
have been entered for each instruction. This 3-bit counter and the
op tode of the instruction provide the address of the VAX control
word ROMs and compatibility mode ROMs. Incrementing the counter
changes the output of the ROMs and therefore changes the entry
point address generated.

| MODE .
CLA B1 FIRST PART DONE
COUNT EXC SET
SaT EXECUTION
> POINT | Exc CcT 2:0
IB ADVANCE | COUNTER
l_. ———={ClK
VAX CLR BYTE O

SEL EXEC e D_
— VEX |

Figure 2-34 Execution Point Counter

TK-0499
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The execution point counter is reset to zero when the op code
(byte @) of the instruction is removed from the instruction buffer
register or as a result of a buffer flush. Removing the op code
indicates that the current instruction has been executed and the
next instruction can begin.

The counter is incremented at the beginning of each CPU cycle (T@)
providing that one of the following two conditions have been met:

a. the operand specifier has been cleared from the buffer
register and the specifier was not in I (Index) mode.

b. the USUB field of the microword indicates the
microaddress is to be determined by the instruction
decode (IB ADVANCE) and a STALL condition is not present.

The signal FIRST PART DONE (FPD) sets the counter to 7. The FPD
flag is set by the microcode (UMSC field = 9) and indicates that
an interrupt was received during the middle of an interruptable
jnstruction. When the interrupt service routine is completed, the
instruction is fetched a second time. However, rather than
evaluating specifiers again, the microcode enters an execution
flow.. The FPD flag must be cleared (UMSC field = 8) before
evaluation of the next instruction can begin. '

2.5.2 Mode Multiplexer (Mode Mux)

The mode multiplexer (Figure 2-35) selects the source for the
‘decode address lines (DECODE ADRS ©07:00) which are used to form
the microaddress. The address source selected will depend pn the
operating mode (native or compatibility), the instruction being
executed and the state of the execution point counter. Note that
in either native or compatibility mode, the BRANCH INSTR line can
be generated only at execution point zero.

In native mode, the VAX control word determines which of the
following enable lines are generated:

Enable Line Comment

SEL SPECIFIER The specifier decode lines are selected for
specifier evaluations and double operand
optimizations. Refer to Paragraph 2.5.3.

SEL EXECUTE SEL EXECUTE is generated once the necessary
specifier evaluations have been performed and the
instruction can be executed. The one's complement
of VAX DECODE bits 67 through 80 is used to form
the execute address.

BRANCH INSTR BRANCH INSTR causes the branch condition bits to
be ORed with the one's complement of VAX DECODE
bits ©3:00 to form the 1low four bits of the
microaddress. The high four bits are generated by
the one's complement of VAX DECODE bits 07:04.
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When the system is operating in compatibility mode (VAX), the
compatibility mode decode bits (Paragraph 2.5.9) are selected to
generate the microaddress. If the PDP-11 instruction is decoded as
a branch instrution, the branch condition bits are ORed with CM
DECODE bits ©3:00 to form the low four microaddress bits. The high
four address bits are generated from the CM DECODE bits 07:084.

The DECODE ADRS lines (07:00) of the mode mux are transferred to
the microsequencer to generate bits @67:80 of the next
microaddress. Bits 12:98 of the microaddress are generated from
the UIMP field of the current microword. The lines selected by the
mode mux direct the microprogram to flows which are required to
evaluate and perform the current instruction.

2.5.3 Specifier Decode

The mode multiplexer selects the specifier decode logic (Figure
2-36) as the microaddress source for-specifier evaluations and
double operand optimizations (Paragraph 2.5.3.1). The operand
specifier in byte 1 of the instruction buffer register is decoded
to provide the correct entry point in the microcode. At each
execution point, the mode field (Paragraph 2.5.1) determines if
the specifier logic is selected and under what circumstances it
can be selected.

Bits 7 of 6 of the specifier logic are equal to zero unless the
optimized conditions are .met (refer to Paragraph 2.5.2.1). Bits 5
through @ are generated as a function of the addressing mode,
context, and use of the PC. Table 2-7 shows the possible addresses
generated by specifier bits 5 through @. '
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BUF B1 07:00

&TO MODE
MUX

L
CTX 3:0 -
VAX DECODE 07:06 |
| MODE
>
FC MODE o SPEICIFIER | ¢
REG + | MODE o] DECODE [~
F B1 07:00 = BITS 5:0
BUF 8197:90 I pecooe R=rC >
R MODE
—
VAX SL o
BIT + CMP _ > | sPeciFieR .
VAX DECODE 05:04 = 10 D—- DECODE |—r—»
(OPTIMIZED) BIT6
| MODE
\ >
DST R MODE .__/
R MODE
| Lo SPECIFIER 1
VAX SL D—. DECODE g
* BIT7 ~
ADD/SUB FLOAT + DOUBLE
OPTIMIZATIONS
SPECIFIER DECODE
BIT7 BIT6 COMMENT
0 O  OPTIMIZED CONDITIONS NOT MET
0 1 F1 CLASS (ADDX2, SUBX3, ETC.)
1 O  RCLASS (BIT X. CMPX)
1 1 M CLASS (ADDXX, SUBXX, ETC.)

Figure 2-36 Specifier Decode Logic
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Table 2-7 Specifier Decode

Addressing Mode | Address Formed by Bits 65:00
Hex Notation RFPC| R=PC| QUAD | ABORT

) s_# 1) 80 82 #1/83

1 S_# 00 00 82 91/03

2 S_# 00 00 02 p1/03

3 S # 00 00 02 91/083

4 I gC 1C - 1D

5 R 04 14 6/16 | 7/17, 5/15
6 (R) . 08 18 - -

7 - (R) oA 1A - -

8 (R)+ 29 19 1F -

9 e (R)+ 2B 1B - -

A D8 @D @D - -

B e D8 gr oF - -

c D16 @D @D - -

D @ D16 oF eF - -

E D32 oD @D -- -

F @ D32 oF gFr - -

The following is a 1list of abort addresses and the conditions
which cause them to be generated:

Abort Address Conditions

g1 a. Writing into a short literal
b. I mode followed by a short literal
C. Using a short literal as a VSRC or ASRC

@3 Quad context and
a. Writing into a short literal
b. I mode followed by a short literal
Ce. Using a short literal as a VSRC or ASRC

85 a. Using register mode as an ASRC
b. ‘I mode followed by register mode

07 ' Quad context and
a. Using register mode as an ASRC
b. I mode followed by register mode
14 Register mode and Rn equals PC
15 Rn equals PC and

a. Using register mode as an ASRC
b. I mode followed by register mode
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16
17

18

1A

1C

1D

Rn equals PC with quad content

Quad context, Rn equals PC, and

a. Using register mode as an ASRC

b. I mode followed by register mode
Register deferred mode and Rn equals PC

Autodecrement mode and Rn equals PC

I mode and Rn equals PC

I mode followed by I mode
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2.5.3.1 Optimizatioﬁs -- The execution of certain instructions
can be optimized by eliminating specifier evaluations, if
particular addressing modes are used in the operand specifiers.

Double operand optimizations are implemented for instructions such
as ADDW2, BISW2, etc. if the first operand specifier is in short
literal or register mode. The second operand specifier in byte 2
of the instruction buffer register is decoded and the signal DST R
MODE is generated if it is in register mode.

For double operand instruction which can be optimized, the mode
field of the VAX control word will equal 2 (Optimized) at
execution point zero. If the specifiers are in an optimized form
(i.e., short 1literal to register or register to register), the
address generated will be modified by changing the value of
specifier decode bits 7 and 6. The class of the optimized
instruction will determine the value of bits 7 and 6, as
illustrated in Figure 2-36. If the optimized conditions are not
met, bits 7 and 6 are zeros and the specifier 'address is not
modified.

If the first specifier in double operand instructions is not in
short literal or register mode, the operand specifier is evaluated
at execution point zero. At execution point one, the second
specifier is checked to determine if it is in register mode and if
it is, the instruction can be executed. If it is not in register
mode, a second specifier evaluation must be performed before
execution. Figure 2-37 shows the general flow of double operand
instructions which can be optimized.
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POINT 1

EXECUTION
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IRD e
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EXECUTE —
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v
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EXECUTE EXECUTE
| .
TK-0802

Figure 2-37 Double Operand Optimizations
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Single operand optimizations are implemented for instructions such
as INCB, TSTB, etc. if the operand specifier is in register mode.
For single operand instructions which can be optimized, the mode
field of the VAX control word will equal 1 (Execute if R Mode) at
execution point zero. If the operand specifier is in register
mode, the ones complement of VAX DECODE bits @67:08 will be used to
form the microaddress. If the specifier is not in register mode,
the specifier decode logic is selected as the address source.
Fi?ure 2-38 shows the general flow of single operand instructions
which can be optimized.

IRD
~
YES EXECUTE _
EXECUTION MODE FIELD =01
POINTO  EXECUTE IF R MODE o’
EVALUATE
OPERAN
. - : 0
EXECUTION  MODE FIELD = 11
POINT 1 EXECUTE { EXECUTE
| - .

TK-0501

?igure 2-38 Single Operand Optimizations

2-73




2.5.4 Branch Decode

If either a VAX or PDP-ll branch instruction is decoded, the
branch condition bits (BR COND @2:00) are ORed with the VAX DECODE
or CM DECODE bits that form the microaddress (refer to Paragraph
2.5.2). In native mode, the low four bits of the op code (IR@3:00)
are input to the branch decode 1logic (Figure 2-39) to determine
the particular branch instruction being executed. In compatibility
mode, bits from the upper half of the PDP-1ll instruction (BUF Bl
7, 02:00) are decoded to identify the particular instruction. The
condition code bits (N, Z, V, C) of the processor status longword
(PSL) are input to the branch decode logic and combined with the
selected instruction lines to form the branch condition bits. The
microaddress generated will be a function of the operating mode
(native or compatibility), the branch instruction being executed,
and the status of the PSL condition code bits.

IR 03:00
—
4 3, BR COND 1
7 7 |
BUF B1 7, 2:0_ . BRCOND2 _
BRANCH
PSL C BIT
VAX Stc » DECODE
PSLZBIT
PSLNBIT BR COND O
PSLVBIT | —

TK-0503

Figure 2-39 Branch Decode Logic
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2.5.5 Size Select
The size select logic (Figure 2-40) is used to generate the PC
update value (Paragraph 2.4.7) and the STALL condition.

In certain addressing modes, the operand specifier requires
additional data to generate the operand address. When these modes
are encountered, the PC is incremented to reflect the 1length of
additional data and will point beyond the operand specifier and
its extension. The STALL conditions will also be generated if
these addressing modes are used and the number of bytes required
are not valid. The STALL condition inhibits the execution point
counter from being incremented and forces the microcode to try
another call. This will continue until all necessary bytes are
valid in the buffer. This prevents the microcode from moving to
the next decision point before the specifier is evaluated.

In both native. and compatibility mode, the specifiers are decoded
to check for the addressing modes which require additional data.
The following shows the number of additional bytes required for
each associated mode.

yative Addressing Modes Additional Bytes Required
Displacement or Displacement Deferred
Byte 1
Word 2
Longword - 4
Immediate 1, 2, or 4 bytes depending
on context
Absolute 4
Branch Displacement
Byte 1
Word 2
Compatibility Addressing Modes Additional Bytes Required
Index 2
Index Deferred 2
Immediate 2
Absolute 2
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2.5.6 I Mode Flag

In index (I) mode, the operand specifier consists of two bytes --
a primary operand specifier and a base operand specifier (Figure
2-41).

15 87 43 0
BASIC OPERAND SPECIFIER ' 4 Rx

~
PRIMARY OPERAND SPECIFIER

TK-0497

. Figure 2-41 Index (I) Mode Operand Specifiers

Both specifiers are required to generate the operand address. When
the addressing mode is decoded as I mode, incrementation of the
execution point counter is inhibited when the primary operand
specifier is removed from byte 1 of the buffer register. This
prevents the microcode from moving to the next decision point
before both specifiers are evaluated and the operand address is
generated.

The I mode flag (Figure 2-42) is set when the primary operand
specifier is in I mode and it has been cleared from the buffer
register. This flag enables the hardware to evaluate the base
operand specifier and still retain the mode of the primary
specifier. Abort addresses are generated when the base operand
specifier is in register, literal, or index mode or when the PC is
used as the index register in the primary specifier. Refer to
Paragraph 2.5.3 for a 1list of abort addresses generated as a
resulit of I mode specifiers. The I mode flag is cleared when the
op code is cleared from byte @ of the buffer register or when the
base operand specifier is cleared from the buffer.
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TO EXECUTION
POINT COUNTER

| MODE T . | Mooe
1

B
~*1KcLr 9}
CLR BO

TK-0498

Figure 2-42 I Mode Flag

2.5.7 Specifier Constants

The specifier constants (Figure 2-43), generated by the
instruction decode 1logic, are input to the Fast Constant
multiplexer of the data path (Paragraph 2.6.3.5). These constants

are generally implemented in the evaluation of autoincrement and
autodecrement modes.

I8 ADVANCE
QUAD. LONG, STB
WORD, BYTE
\
AN 4 SP1 CON |SP1 CON 3:0
pr———————

SRCCON = 1. | wis LATCH
SRC CON = 0

CLK

T0

> TO DATA PATH
DST CON = 2
————————)

)SPZ CON 2
VAX
SP2 CON 1
DSTCON = 1
—————— o

Figure 2-43 Specifier Constants

TK-0498
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In native operating mode, the Specifier 1 Constant (SPl, CON
P3:90) is a value determined by the data type of the operand
specifier being evaluated; 8 (quadword), 4 (longword), 2 (word),
and 1 (byte). Specifier 2 Constant (SP2 CON @2:01) is @.

In compatibility mode, Specifier 1 Constant is the number 1 or 2,
determined by the data type (byte or word) of the instruction and
the number of the source register. Specifier 2 Constant is the
number 1 or 2, determined by the instruction data type and the
number of the destination register.

2.5.8 Microsequencer Branch Conditions

The instruction decode 1logic provides two branch condition bits
(BRC ©@1:00) which are used in the microsequencer to form the
microbranch addresses (Paragraph 2.3.2.1). The condition bits are
transferred to a branch multiplexer (physically located on the
Interrupt Control board). When the UBEN field of the current
microword equals 8, 9, A, or B, the BRC bits are selected to
generate the low two bits of the next microaddress.

The BRC multiplexers (refer to Figure 2-44) select inputs
generated from a decode of both VAX and PDP-11 instructions. Table
2-8 shows the inputs selected for the BEN field values in_ each
mode.

Table 2-8 1Instruction Decode Microbranch Conditions

BEN Field | Native Mode CO-patibility'Mode
Value . BRC 1 BRC 8 BRC 1 BRC 8
8 ASRC or VSRC | ASRC or QUAD| @ Class J class or DM27

@ = Normal, 1 = Quad
2 = Field Src, 3 = Address

Src
9 IRG2 IRO1 SM or DM DST R = PC
= 47 or 57
A : ") SRC R = PC
B IB CHK 1 IB CHK 0 IB CHK 1 IB CHK @
@ = TB Miss, 1 = Error 0@ = TB Miss, 1 = Error
2 = STALL, 3 = Data OK 2 = STALL, 3 = Data OK
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BOARD

1B CHK O o

AC1

IRO1

ASRC + QUAD SAVED >

IB CHK 1
L .
AA1
IRO2 '(VAX1
CTX 1 SAVED o _f
VAX
ICL UBEN 1:0{
IB CHK 1
L o
)
*18RC 1
MUX
(SM45 + DM45) *PC__| oy
MOVB + MTP o ¢
VAX

1B CHK 0.
4
SRCR = PC
-
DSTR = PC
- L
JSR + JMP + DM27 o

BRC O
MuUX
(CM)

ICL UBEN 1:0{

BRCO _TolICL
BOARD

TK-0492

Figure 2-44 Microbranch Condition Multiplexers
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2.5.9 Compatibility Mode Decode

Compatibility mode is specified when bit 31 (CM bit) of the
Processor Status Longword is set. This mode enables the execution
of PDP-11 instructions stored in the instruction buffer register.
The compatibility mode decode logic generates address lines (CM
DECODE 07:00) which are selected by the mode multiplexer to form
the next microaddress. The CM decode 1logic can direct the
microcode to a flow which either evaluates the source or
destination mode of the operand or exeuctes the instruction. The
PDP-11 instructions are stored in bytes @ and 1 of the buffer
register as shown in Figure 2-45.

B1 BO
A AL
7 6 5 4 3 2 1 o¥Y7 66 5 4 3 2 1 0
SINGLE BYTE 0 A OP CODE

IR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

81 8O
r A —A
7 6 5 4 3 2 1 0o0V¥Y7 6 5 4 3 2 1 0)
SINGLE OPERAND 0 OP CODE DST MODE DST R
IR |15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP CODE
B1 BO
AL A
776 5 4 3 2 1 O0Y¥Y7 6 .58 4 3 2 1 0
SRC OR
REGISTER CLASS OP CODE . R . DST MODE |SRC OR DST R
IR 15 14 13 12 11 10 89 8 7 6 &5 4 3 2 1 o0
B1 80
AL A
77 6 5 4 3 2 1 o0VY7 6 5 4 3 2 1 0)
DOUBLE OPERAND OP CODE SRC MODE SRC R DST MODE DSTR

IR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TK-0493

Figure 2-45 Format of PDP-l1 Instructions
in Buffer Register Bytes @ and 1 '
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2.5.9.1 CM Execution Address ROM -- The compatibility mode decode
bits are generated from execution ROMs or from a decode of the
SRC/DST mode field of the instruction. Refer to Figure 2-46. The
execution ROMs are divided between double operand and register
class instructions, single operand instructions, and single byte
instructions. Enabling of the ROMs depends on the format of the
instruction stored in buffer register bytes 8 and 1. For example,
the single byte ROM is enabled if byte 1 is all zeros. The ORed
output of the execution ROMs is transferred to the CM DECODE
multiplexer. The execution 1lines are selected if CM EXEC is
enabled. Generation of the compatibility mode execute 1line is
dependent on the instruction class and state of the execution
point counter (EXC CT 01:080). The execution ROMs are used to
generate the microaddress once all necessary source and
destination operand evaluations have been completed. The following
shows the conditions under which CM EXEC is generated for each
value of the execution point counter:

Execution Point Counter Conditions which enable CM EXEC

EXC CT 01:00 = @0 Single byte
OR DM = @ AND SM = @
OR DM = @ AND register class
OR DM = @ AND single operand

Execution Point Counter Conditions which enable CM EXEC

ESC CT 01:00 = 01 SM = 0
OR DM = ¢
OR register class
OR single operand

EXC CT 01:00 = 10 or 11 Any combination of instruction class and
operand mode

A maximum of three execution points are required to evaluate and
execute any PDP-ll instruction. In double operand instructions
(with neither the source or destination mode equal to zero), the
Source operand is evaluated at execution point @, the destination
operand is evaluated at execution point 1, and the instruction is
executed at execution point 2. The instruction can be executed at
execution point @ if, for example, the instruction is a type with
no operands, or a double operand instruction with both operands in
register mode.
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2.5.9.2 SRC/DST Mode Decode -- 1If source destination operand
evaluations are required, the CM EXEC line is not generated and
the CM DECODE multiplexers select inputs from a decode of
instruction source or destination fields. The lower four bits (CM
DECODE ©3:00) are generated from the SRC/DST multiplexer. The
source inputs to the mux are enabled only under one set of
circumstances; if the instruction is of double operand (binary)
class, the execution point counter equals @, and the source mode
is not equal to zero. The destination inputs are enabled to
evaluate the source or destination mode in register class
instructions and the destination mode in single or double operand
instructions.

The upper four address bits (CM DECODE #7:084) are generated from a
decode of the SRC/DST mode fields and the op code. The execution
of certain double operand instructions can be optimized if the
operation is a literal to register transfer. Optimizations require
that the source operand be in immediate mode (27) and the
destination operand be in register mode. The constant or literal
data will be located in the second word of the instruction (buffer
register bytes 2 and 3). The microaddress generated will depend on
the op code of the instruction and the optimization code
generated. Refer to Figure 2-46.
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2.6 DATA PATH DESCRIPTION

This section provides a functional description of each area of the
data path with relation to microcode control and instruction
execution. A discussion of logic unit operation is provided in
areas which require further clarification.

2.6.1 General Data Path Organization

The data path is divided into four major areas: Address,
Arithmetic, Data, and Exponent section. Refer to Figure 2-48. Each
section operates as an independent unit, capable of processing
data or addresses in parallel with operations being performed in
another section.

2.6.2 Data Path Control

The execution of each instruction requires a given number of
sequential operations to be performed in the data path. The steps
needed for instruction execution are defined by microinstructions
or microwords, each of which consists of 96 bits and is organized
into various length control fields. Each section of the data path
derives its control. from an associated microword field. The fields
which are designed for data path control are illustrated in Figure
2-47.

The Control Store bus (BUS CS) provides the path for the transfer
of each microword field to various areas of the central processor.
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BUS CS 19 18 17 16 15 13 12
UEBMX| USMX | UEALU
EALU SHIFT EXPONENT
8-INPUT COUNT ALU
MUX  MUX  FUNCTION
UFEK
UVAK | usck
BUS CS 34 32 31 3029 26 25 24 23 22 20
uPCK UMSC
PROGRAM MISCELLANEOUS | |
COUNTER VIRTUAL SHIFT
ADDRESS | COUNT
REGISTER REGISTER
FLOATING
EXPONENT
REGISTER
BUS CS 54 51 50 a8 47 42 41 35
UQK | USGN USPO
Q REGISTER SIGN SCRATCH PAD
AND QMX OPERATION
BUSCS 76 70 69 66 65 64 63 58 57 55
UALU UKMX usl
ALU CONSTANT SHIFT
FUNCTION MUX INPUT
URMX
iy
BUS CS 95 92 91 88 87 85 84 82 81 80 79 78 77
UDK USHF usMx | uamx | uoTt
D REGISTER SHIFTER ALU ALU DATA RAMX/
AND DMX B-INPUT A-INPUT TYPE RM
MUX MUX

TK-0019

Figure 2-47 Microword Fields for Data Path Control
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2.6.3 Arithmetic Section

The Arithmetic section of the data path consists of the arithmetic
logic unit (ALU), general purpose registers, bit mask generator,
constant generator, shifter, and temporary storage registers.
Contents from registers in the Address and Data sections are input
to the arithmetic section to allow the required arithmetic and
logic operations to be performed on data and addresses.

Three data types are processed by the Arithmetic section: 8-bit
bytes, 16-bit words, and 32-bit 1longwords. The data type |is
controlled by the UDT field of the microinstruction.

UDT Field
Hex BUS CS 79 BUS Cs 78 Context
2 "} 2 Longword (Long, Quad, Floating, or
Double floating)
1 2 1 Word
2 1 @ Byte
3 1 1 Instruction Dependent

If the UDT field equals 3, the context is determined by the
instruction decode logic.

2.6.3.1 Arithmetic/Logic Unit (ALU)

The main processing unit of the arithmetic section is the ALU
which performs 32-bit arithmetic operations (with fast carry
look-ahead 1logic) 32-bit 1logic operations. The ALU functions
provided are wused during instruction execution for data
modification and address generation. The ALU also provides the
focal point for the transfer of information betweeen other
sections of the data path. Register contents from the address,
data, and exponent sections are routed to the ALU through the A
and B input multiplexers (AMX and BMX). These inputs are used for
a number of functions depending on the instruction being executed
and the ALU operation selected. The operation select inputs of the
ALU are controlled by the UALU field of the microinstruction. The
operation to be performed may be defined explicitly or if the UALU
field equals 3, the function is determined by the instruction
decode logic.

Table 2-9 shows the correspondence between the UALU field value
and the operation performed.

As previously mentioned, if the UALU field equals 3, the function
selected is a result of the instruction being executed. The
instruction dependent ROMs are addressed by the instruction
register op code bits and the ROM outputs provide the necessary
select lines. In Instruction Dependent mode, the full logic and
arithmetic functions of the ALU are available (refer to Table
2"10) °

When the UALU field equals 1 or 6, the RLOG stack is updated with
the general register (RA) address, the lower four bits of the KMX
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Table 2-9 UALU Function Select

ALU_ _Mode
ALD Sel u-l-n(rggici ;;;22
AL D) e e 66 53 3 ;1‘:; nag=r (PELER c-1-n(=!§§§i petatdhdindanti
o 0 0o o 0|lO0O 1 1 o 0 k: § A minus B
1 (o] 0 0 10 1 1 o 0 1 A minus B(R LOG)
2 0O 0 1 o0}jO0 1 1 o 0 1 A minus B minusl
3 0 0 1 1| = = « = - - Instruction
4 0 1 0 0[{1 0 o0 1 0 a a”;§:2d§“§1u. 1
5 0 1 0 1|1 0 0 1 0 D A plus B
6 0 1 1 0|1 o o0 1 (o] [ A plus B(R LOG)
7 0o 1 1 1|1 1 o 1 1 1 A+E
8 1 0 0 0o|[0 1 1 o 1 1 A@s
9 1 0 0 1/0 1 1 1 1 1 AE
A 1 01 ofjo0o 0 o0 o 1 1 x
B 1 01 1({1 0 o0 1 0 FIL°e¥it" | A plus B pilus c
c 1 10 o|1 1 1 o 1 1 A+ B
D 1 1 0 1/1 0 1 1 1 1 AB
E 1 1 1 o1 0 1 o 1 1 B
F 1 1 1 11 1 1 1 1 1 A
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Table 2-19 Available ALU Functions in Instruction Dependent

ACTIVE-HIGH DATA
Men Mo L: ARITHMETIC OPERATIONS

SELECTION LoGIC Ca=0=M Caotlel
S3 $2 8y So FUNCTIONS (ne carry) {with carry)
L L L L FX Fea FeApiut
L L L H F<A+B FeAss F=(A+B8ipius?
L L H L F-As FeA'+B Feo(A+Blplust
L L H ] F-0 F = mnus 1 (2°s complement) F = 2010
L " L L F<a8 F * Apius AB F = Apius AB pius 1
L H L H F-3 F = (A ¢+ B) plus AB F o (A +8)plus AB plus 1
L H H [8 LAY WCN ] F e A mnus 8 minus b FeAmnusB
L “ H H FeAB F = Al minus 1 FeaAB
] L L L F-X'8 F > Apius AB F = Apilus AB pius |
H L L H FeA ® 8 FeApius8 F = Apius 8 plus |
H L H L Fe8 Fela+) plusAB F = (A +B)plus AB Dlus |
H L H H FeAB F » AB minus 1 FeAS
H H L L F=9 F=Aplus A® FeAplus Aplus |
H H L H Fea+B Fe(A+Blpius A F (A +8)plus Apiust
H H 7] L FeA+B F=(A+B)olus A Feo(A+BiplusAplust
H H “ H FeA F o Aminust FeA

*Each bit Is shifted to the next more significant pasition.

Mode

and a bit which determines if an add or subtract is requested. The
RLOG stack contains 16 locations which are used to keep a record

of changes made
Paragraph 2.6.3.8).

to

the

scratch pad
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2.6.3.2 ALU A-Input Multiplexer (AMX)

The AMX provides the means for transferring information from the
data section or from the scratch pad register set A to the A input
of the ALU (refer to Figure 2-49). Data which will be used during
instruction execution can be stored in the Q or D register (in the
data section) or in the scratch pad register sets. When the
contents of these registers must be manipulated or used in an
operation, the AMX selects the correct source as the ALU input.

If the required data is contained in the scratch pad register set,
the AMX will select the latch A (LA) output of the register set.
The contents of the correct register location must be stored in
" the latch before the AMX selection is made.

If the data required for the operation is contained in the D or Q
registers, the AMX will select the RAMX of the data section as the
ALU input. Both the D and Q register are input to the RAMX and the
proper source is selected by the microinstruction (refer to
Section 2.6.5.1). If the contents of the D or Q register is 1less.
than 32 bits, the data must be sign or zero extended to 32 bits by
the RAMX. The data input to the AMX must be in the correct format
because the ALU operates on 32 bit (longword) data types only.

ALU
B A
| 0ATA sECTION D Q
| REGISTER ‘REGISTER
ZEXT RMX
AMX SO AMX \ I /
AMX S1 -—
3
I RAMX 31:00 ramx]
RAMX SXT (W) _
RAMX SXT (B) e
LA 31:00 \
LATCH A (LA) |
SCRATCH PAD |
REGISTER SET
A |
(RA) '

TK-0020

Figure 2-49 ALU A Input Multiplexer (AMX)
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The AMX is controlled by the UAMX field of the microword as
follows:

UAMX Field
Hex °‘BUS CS 81 BUS CS 80 Data Selected
"] 0 2 LA
1 ") 1 RAMX v
2 1 2 RAMX SXT (Sign extension determined
"by UDT field)
3 1 1

RAMX OXT (Zero extension determined
by UDT field) 4

The data type and required sign or zero extension of the RAMX is
determined. by the value of the UDT field as follows:

UDT Field
Hex BUS Cs 79 BUS CS 78 Data Type

Longword: SXT (L) or All zeros
Word: SXT (W) or OXT (W)
Byte: SXT(B) or OXT(B)
Instruction Dependent

WN -
H~eQ
)

Note that the zero extension of a longword format results in all
zeros at the AMX output.

When the UDT field equals 3, the data type is determined by the
instruction decode 1logic which provides information for
instruction execution and operand specifier evaluation.
Instructions requesting quad, floating, or double floating context
will result in a longword data type.

Table 2-11 shows the relationship between the control field values
and the data format of the AMX output.
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2.6.3.3 ALU B-Input Multiplexer (BMX)

The BMX (Figure 2-50) allows information from the data, exponent,
address, and arithmetic sections to be input to the ALU. These
inputs are used separately or in combination for the following
operations:

Address generation -- Modification of the Program Counter (PC) can
be accomplished by routing the PC from the address section to the
ALU through the BMX. For example, in displacement addressing modes
utilizing the PC, the new PC value is calculated with the BMX
selecting PC and the AMX selecting the sign extended displacement
value.

Manipulation of stored data -- In certain operations the BMX is
used for the same purposes as the AMX. Information stored in the
data section (D or Q registers) and in the scratch pad register
set B are input to the ALU through the BMX. The contents of
register set B are an exact copy of register set A contents. The
feature of having the same information available at both ALU
inputs enables fast access to both the source and destination
register during the execution of register to register mode
instructions. Also, this feature allows instructions which require
the B MINUS A function to be executed without swapping the operand
from one ALU input to the other. The function B MINUS A is not
provided by the ALU. Therefore, set-up of the operands at the
proper inputs would be required if the contents of the register
set was not provided at both the ALU inputs.

Data required for instruction execution is also stored in scratch
pad register set C. The contents of these temporary storage
locations are latched (in LC) before being input to the BMX.

Instruction Restart -- The RLOG and PCSV inputs to the BMX are
used specifically to restart an instruction. If a fault occurs,
the entire 32 bit PC can be reconstructed from the contents of the
PC Save (PCSV) register and the general registers can be restored
from the RLOG stack (refer to Paragraph 2.6.3.8). The PCSV
register is used to hold the lower 8 bits of the PC at the
beginning of an instruction. The RLOG stack is comprised of 16
locations which contain a record of changes made to the scratch
pad register set. The RLOG and PCSV inputs are selected when the
BMX microword field equals zero and the signal READ RLOG \is
present. ' .

Mask and Constant Generation -- The MASK input to the BMX routes
the output of the bit mask generator (Paragraph 2.6.3.6) to the
ALU for 1logic operations. The KMX input supplies constants
(Paragraph 2.6.3.5) required for the execution of instructions and
evaluation of operand specifiers.

Assembly of floating-point data formats -- During the execution of
floating-point instructions, inputs from the data, exponent, and
control section are assembled by the BMX to form a packed
floating-point data type.
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The fraction position is taken from the DREG, the sign (SD) from
the control logic, and the exponent from the EALU (refer to Table
2-14 for the format of the packed floating-point data type). The
SD bit contains the sign of the destination fraction in
floating-point operations. The SD bit is loaded and controlled by
the USGN field of the microword during execution of a
floating-point instruction. Table 2-12 shows the relationship
between the USGN field value and the source sign (SS) and
destination sign (SD) selected. Due to the timing delays in
routing the data, both the EALU and ALU must be selected for logic
mode to ensure that the data is available in the arithmetic
section when required.




ALU

B A
CERES G GIINND GENED GhuND G T
FoATA SECTION
| 5 3
BMX §2 l REGISTER| |REGISTER
BMX S1 BMX
BMX SO '
ADDRESS SECTION 1 |
PC tocao0 RBMX 31 :oo! RBMX
| |
MASK 31:00 | \
MASK
DREG i
d '
EALU EXP |
&—_ L GIANS GINND CELEND GEEED CEEEED GEENND G
KMX 15:00
KMX LB 31:00
LC 31:00
PCSV 07:00
| RLOG 08:00
LATCH C LATCH B
PCSV RLOG (LC) (LB)
STACK SCRATCH SCRATCH
PAD PAD
REGISTER REGISTER
SETC SETB
(RC) (RB)
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Figpre 2-50 ALU B-Input Multiplexer (BMX)
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Table 2-12 Source and Destination Sign Selection

_ USGN Field Value Selected
Hex | BUSCSS0 BUSCS49 BUSCS48 | Source Sign (SS) Destination Sign (SD)
0 L L L SS SD
1 L L H ALUIS SD
2 L H L SD SD
3 L H H SS SD
4 H L L SS Ss
S H L H ALUIS XOR SS XORIR1 | ALUIS
6 H H L ALUI1S5 XOR SS ALUIS
7 H H H 0 0
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Selection of the BMX input is controlled by the UBMX field of the
microword and two enabling conditions (R=PC and READ RLOG). Table
2-13 shows the relationship between the UBMX field and the input

selected.

Table 2-13 BMX Input Selection

UBMX Field BMX SELECT
BUS CS BUS CS BUS CS | RLOG ’
Hex 84 83 82 READ | R=PC | S2 §S1 S8 | BMX DATA
0 "] -0 ] "] X 2 0 ") MASK
"] "] 0 0 1l X 0 0 1 RLOG and PCSV
1 0 0 1 "] 2 "] 1l 1l LB
1 ) ] 1l "] 1l 1 2 1 PC
2 "] 1l 0 ] X 0 1 0 Packed
Floating-point
3 "} 1 1 2 X 0 1 1 LB
4 1 /] "] "} X 1 ("] 0 LC
5 1 [} 1 0 X l @ 1 PC
6 1 1 0 0 X | 1 ] KMX
7 1 1 1l 0 X 1 1l 1l RBMX
X=irrelevant

‘Table 2-14 illustrates the BMX data format for each input

selected.
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Table 2-14 BMX Data Format

usMx | READ | __
o | hioa | mePe BMX DATA FORMAT
3
0 0 X MASK (31:00)
2 1716 08 07
0 1 x | 00 | ~RLOG08:000 | pcsvior:00
31
1 0 0 LB(31:00)
31
1 0 1 PC(31:00)
1 16 15 14 06
2 0 X D(23:08) [so| EeaLuio7:0m | o(30:24)
3
3 0 x | L8(31:00)
3
4 0 X | LC(31:00)
3
5 0 x PC(31:00)
3 16 15
6 0 X 00 | KMX (15:00)
31
7 0 x RBMX(31:00)

X=IRRELEVANT
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2.6.3.4 ALU Shifter (SHF)
The Shifter (Figure 2-51) provides the data source for the scratch
pad register sets and allows the transfer of information between
the arithmetic and data sections.

The Shifter is used in the

arithmetic section to multiply (left shift) or divide (right
shift) the ALU output.

SCRATCH SCRATCH SCRATCH

PAD PAD PAD

REGISTER REGISTER REGISTER

SETC SETB SETA

(RC) (RB) . (RA)

’ [Gavasecmon

' -1 DFMX

| I —

————————— e ————

SHF
| ' / \ \
I SHF 31:00 )| SHF 31:00 \
: L \
| . SHF 31:30 | SHF 29:00 \\
| siFT LerT SHIFT RIGHT ' \
l .

SHF SHF RT EN SHE \
LFTS1—{0 — NO SHIFT SHF SO ﬁ:nren \
_|1-sHF L1
| sHFso—) ZShF 2 SH (R) \ / s A_XSHFSO \

SHF  —{3-SHF L3 ALU 31 } T T T
ALU 31 \

LFTEN  §
| ALU 31:00 +3 ALU31:02 ALU 30:01 \

" Tx-0016

Figure 2-51 ALU Shifter (SHF)

In index mode specifier evaluations, the SHF is used as a
multiplier to create the correct index wvalues for address
calculations. Index mode addressing permits the access of data
arrays which can be byte, word, longword, or quadword organized.
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Access to an array requires the contents of an index register to
be multiplied by the size of the array's primary operand in bytes
(1 for byte, 2 for word, 4 for longword or floating, and 8 for
quadword or double floating). The SHF provides the required
multiplication by shifting the data an appropriate number of bits.
Multiplication by 1 requires no shift (L@), multiplication by 2
requires a left shift of 1 (Ll1), by 4 requires a left shift of 2
(L2), by 8 requires a left shift of 3 (L3). The shift requirement,
which is a function of the data type, can be defined explicitly by
the USHF field or can be controlled by the UDT field and
determined by the instruction decode logic.

The SHF is also implemented in the execution of multiply, divide
compatibility mode rotate, and shift instructions. These
instructions can force a left shift by 1 (L1l), right shift by 1
(Rl) or right shift by 2 (R2). Input to bit positions which are
left empty by the shift is controlled by the microword shift input
control (USI) field.

USI Field
Hex BUS CS 57 BUS CS 56 BUS CS 55 Shift input
0 ) ] ) PSL (N bit)
1 () 2 1 ALU (Bit 31
2 ) 1 0 2 :
3 ) 1 1 ]
4 1 g - ) 2
5 1 ] 1 Q Register (Bit 31)
6 1 1 @ "} -
7 1 1 1 1

Selection of the SHF is determined by the value of the USHF field
of the microword. For USHF field values 1, 2, or 4, input to the
vacated SHF bit positions is determined by the USI field. For USHF
field values 3 or 5, the vacated SHF positions are zero.

USHF Field
Hex BUS Cs 87 BUS Cs 86 BUS Cs 85 SHF Output

"] "] ] 2 ALU with no shift (L@)

1 [} 1 ALU 1left shifted by 1
(L1)

2 [} 1 ) F(\Ll{ right shifted by 1
R1) '

3 9 1 1 ALU shift determined by
UDT field

4 1 2 ") ALU right shifted by 2
(R2)

5 1 1 ALU left shifted by 3
(L3)

6 1 1 ) Reserved

7 1 1 1 Reserved

If the USHF field equals 3, the SHF output is controlled by the
value of the UDT field.
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UDT Field
Hex BUS CS 79 BUS CS 78 SHF Output

Longword; ALU left shifted by 2 (L2)
Word; ALU left shifted by 1 (L1)
Byte; ALU with no shift (L@)
Instruction dependent: any of the
above or Quadword; ALU left shifted
by 3 (L3)

oS

0
0
1
1

W e

If the UDT field equals 3, the SHF output is determined by the
instruction decode logic (Specifier 1 Constant ©2:00).

Table 2-15 shows the relationship between the microcode field
values and the data format of the SHF output.

USI indicates that the bit value is determined by the USI field.

2.6.3.5 Constant Multiplexer (KMX)

The KMX provides the arithmetic section with constants required
for the performance of various functions. The KMX constants are
input to the ALU via the BMX. Selection of the KMX allows the
source of constants to be either the Fast Constant Multiplexer
(FKMX) or the Slow Constant (SK) ROM (refer to Figure 2-52).
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Table 2-15 SHF Data Format

usHF | ot
wex) | HEx) SHF DATA FORMAT
31’ -
0 X ALU 31:00
L 01 00
! X ALU 30:00 Tusi ]
31 30 -
2 X ust | ALU 31:01 ]
2 . 02 01 00
3 0 ALU 29:00 o] o
31 p—
3 L l ALU 30:00 o
3 ~
3 2 ALU 31:00
31 "
3 3 INSTRUCTION DEPENDENT
31 30 20 -
4 X ust | usi | ALU 31:02
3 03 02 01 00
5 x |1 ALU 28:00 [o[o o]

X=IRRELEVANT

USI INDICATES THAT THE BIT VALUE IS DETERMINED BY THE USI FIELD.
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UKMX REG

ALU

[\

L} FEXPONENT SECTION

[T\

/[

l

I

|

L]
KMX 15:00 :

-

KMX \

I FKMX 09:00

sC

SK 15:00

SK
ROM

UKMX 05:00

/

FKMX \

IRC SP1 CON 03:00

UKMX 05:00

IRC SP2 CON 01:00

t SC 09:00

UKMX 02:00

TK-0017

Figure 2-52 Constant Multiplexer
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Fast Constant Multiplexer (FKMX) -- The fast constant inputs are
provided by the instruction decode logic, the UKMX field of the
microinstruction, or the Shift Count (SC) register of the exponent
section.

The instruction decode 1logic generates SPlCON (Specifier 1
Constant) and SP2CON (Specifier 2 Constant). In VAX operating
mode, SP1CON is the number 1, 2, 4, or 8, determined by the data
type of the operand specifier being evaluated. SP2CON is the
number @.

In 11 Compatibility mode, SPICON is the number 1 or 2, determined
by data type and register number of the instruction source

register. SP2CON is the number 1 or 2, determined by the data type
and register number of the instruction destination register.

A constant (#1, 2, 3, 4, or 8) may also be explicitly defined by
the UKMX field of the microinstruction.

The Shift Count (SC) input to the FKMX provides a data path
between the exponent and arithmetic sections. The Shift Count
register may also be used to store constants for arithmetic
operations.

The fast constants are generally used to increment or decrement
data. These constants are also implemented in the evaluation of
auto-increment and auto-decrement modes.

Slow Constant (SK) ROM -- The remainder of microprogram cénstants

are supplied by the SK ROM. These constants are used to execute
instructions, isolate bits or bit fields, provide exponent biasing
and select shift constants.

The KMX selection is determined by the value of UKMX field of the
microinstruction.

UKMX Field
BUS CS

Hex 63 62 61 68 59 58 KMX Output
2 2 2 "] 2 2 2 #8
1 2 () 2 "] 2 1 $l
2 2 "] 2 "} 1 0 $2
3 2 2 "} 2 1 1 #3
4 "] "] ] 1 "} 2 #4
5 ("] 2 "} 1 "] 1 SP1CON
6 2 "] a 1 1 2 SP2CON
7 2 "] 2 1 1 1 SC@9: 00
8 through 3F SK ROM Constant (SK15:00)
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2.6.3.6 Bit Mask Generator (MASK)

The MASK is used in the data section to generate a bit pattern
within a 32-bit word. This bit pattern can be used to isolate
fields of bits through the use of the ALU logic functions. This
process occurs in the execution of bit field instructions and in
the memory management process of translating virtual addresses to
physical when the addresses are not already translated in the
Translation Buffer. _

The MASK generator output is a single zero bit in a field of ones.
The Shift Count (SC) input addresses a single bit in a longword.

The MASK generator decodes the address and inserts a zero in the
desired position with the remaining output bits equalling ones

(refer to Figure 2-53).
ALU j\\

/e \ [ m \

EXPONENT SECTION

MASK
| . |MASK .
o ,SC 04.00. GENERATOR_31:00 .
V(sELECTS (DECODER) | (SINGLE BIT SELECTED
'SING LE EQUALS 0, REMAINING

BITS EQUAL ONES)

TK-0018

Figure 2-53 Mask Generator
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The MASK output is used to generate a bit pattern in a 32 bit
word. '

Example: To generate a pattern of all ones from bit
position 5 and above, the procedure would require:
AMX=8, BMX=MASK, SC=5, and ALU Operation=A PLUS B
PLUS 1 (Figure 2-54).

31 00
AMX (0)|J00000000000000000000000000000000

31 05 00
PLUSBMXMASKI[1 1111 11i11111 111111111 1111011111

31 | 00
PLUS1/0000000000000000000000000000000 1

31 05 00
=BITPATTERN 1 1 1111 1111111111111 1111111100000

TK-0246

Figure 2-54 Mask Example

The following example demonstrates the use of the MASK generator
to extract a field of information from a 32 bit lohgword.

Suppose that the field begins at bit P and the field is of length
S (Figure 2-55).

32 00
EXTRACT FIELD

S

N 3

TK-0247

Figure 2-55 Extract Field
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Let P = 9 and S = 8 for this example.
Two -masks must be generated to extract a field.
To generate the first mask, the procedure would require: AMX = @,

BMX = MASK, SC = 9, and ALU Operation = A PLUS B PLUS 1. This
operation, shown in Figure 2-56, results in a bit pattern A.

31 00
AMX (0)|00000000000000000000000000000000

31 ’ 09 00
\PLUSBMX'(MASK) 11111111111 111T111111110111111111

31 00
PLUS1]0000000000000000000000000000000 1

31 09 00
=BITPATTERNA 111111 11111111111111111000000000

TK-0248

~Figure 2-56 Bit Pattern A
Bit pattern A is stored in a temporary register for later use.

The second mask would require the procedure: AMX = @, BMX = MASK,
SC = 17, (P plus S) and ALU Operation = A PLUS B PLUS 1l. This
operation will result in bit pattern B, shown in Figure 2-57.

BIT PATTERN B :
31 17 00

11111111111111100000000000000000

TK-0249

Figure 2-57 Bit Pattern B
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The final procedure requires the ALU Logic function A AND NOT B.
This ALU operation will result in the bit pattern shown in Figure
2_58.

BIT PATTERN A
31 09 00
1T1T1T1T1T1T1T1T1T1T1T1T1T1T1T111111T11000000000
BIT PATTERN B
31 . 17 00

11T111111111111100000000000000000

A AND NOT B
31 17 09 00

00000000000000011111111000000000

T
s
|

TK-0280

Figure 2-58 Extract Field Pattern
The resulting bit pattern shown in Figure 2-58 can be ANDed with

the 1longword of data to extract 8-bit field of information
beginning at bit @29.
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2,6.3.7 Scratch Pad Register Sets -- Three 16 word by 32 bit
register sets are provided as a fast memory storage area (refer
to Figure 2-59).

Register Set C (RC) =-- RC 1is used as temporary storage for
addresses and operands generated during the execution of the
microprogram. A 1latch (LC) holds the contents of a temporary
register which is fetched for use in the Arithmetic Section.

Register Set A (RA) and Register Set B (RB) =-- RA and RB provide a
two-port storage area for the 16 processor general registers.
These temporary registers are implemented during addressing mode
evaluations and used as fast memory storage during instruction
execution. The two-port feature allows fast access to both the
source register (from RB to the BMX) and the destination register
(from RA to the AMX) during the execution of register to register
mode instructions. 'The associated latches (LA and LB) hold the
contents of the temporary registers for use in the Arithmetic
Section.

The three register sets (RC, RB, RA) and associated latches are
controlled by the value of the USPO field of the microword. Table
2-16 shows the relationship between the USPO field value and the
function selected. '
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— TO DATA SECTION (DFMX)

SHF
ALU
B8 A
/ BMX \ / AMX —\
LC 31:00 ILB31:OO ‘ ‘LA31:00
" LATCH c— LATCH B—) LATCH A—)
LATCH (LC) LATCH (LB) LATCH (LA)
RC —REGISTER— —REGISTER— —REGISTER—
ADRS 03:00_["SET C T|RB,ADRS 03:00 [~SET B ~JRA ADRS 03:00 ["SET A -
*C(rO) - __(RB) - — "L_(RA) -
(16 X 32)—] [— (16 X 32) (16 X 32)]
WRT nc—’ WRT RA, RB—’ WRT RA, ms—j
SHF 31:00 SHF 31:00 SHF 31:00

Figure 2-59 Scratch Pad Register Sets
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Table 2-16 Scratch Pad Operation

USPO Field
Hex BUS CS ' Scratch Pad Operation
Value (41 40 39 38 37 36 35
00-05 | @ 2 2 2 X X X No Operation
_86 2 2 2 [’} 1 1 @ Load LC ;Address=SC0@3:00
87 2 ) 2 2 1 1 1 Write RC, RB ;Address=SC03:00
98-0F | @ "] 2 1 A Cc N Load LA, LB ; A d d r e s s
determined by ACN
value
16-17 | @ 2 1 2 R N Load LA sAddress=General
Register (R@-R7)
18-1F | @ "} 1 1 C N Write RA, RB ;j; A d d r e s s
: determined by ACN
. value -
20-2F | @ 1 0 Load LC iAddress=Temporary
_ Register (T@8-TF)
30-3F | @ 1 1 Write RC ;Address=Temporary
_____Register (TO-TF)
40-4F | 1 [’} Load LA, LB ;Address=General

Register (R8-RF)

Write RA, RB ;Address=General
Register (RO-RF)

- =

50-5F |1 0

o X W W w
z2 Z2 Z zZ2 =

Load LA, LB ;Address=General
Register (R1)

and Write RC ;Address=Temporary
Register (TO-TF)

60-6F | 1 1 2

70-7F | 1 1 1 R N Load LC ;Address=Temporary
Register (T@-TF)
and

Write RA, RB ;Address=General
Register (R1)

Register Set C (RC) can be addressed explicitly as a register
number (T@-TF) or the address can be defined by the SC register
bits 03:00

Register Sets A and B (RA and RB) can be addressed explicitly as a
register number (RO-RF) or the address can be determined by an
Address Code Number (ACN). : :

The address defined by the ACN value is dependent on the operating

mode (VAX or 11 Compatibility). Table 2-17 shows the relationship
between the ACN value and the register address selected.
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Table 2-17 Scratch Pad Address Code Number (ACN)

ACN VAX Mode 11 Compatibility Mode

Hex Value | RA Address RB Address RA Address RB Address
00 SP1 R SP1 R SRC R SRC R

g1 SP1 R SP2 R DST R DST R

92 SP2 R SP1 R DST R SCR R

83 PRN PRN SRC R SRC R

04 PRN PLUS 1 PRN PLUS 1 SRC ROR 1 SRC ROR 1
@5 SC (03:00) SC (03:00) SC (83:00) SC (83:00)
@6 SP1 R PLUS 1| SP1 R PLUS 1| SRC R PLUS 1| SRC R PLUS 1
87 "] ‘ "] 1 @ ")

In VAX mode, the three register values are determined by SPl1 R
(Specifier 1 Register), SP2 R (Specifier 2 Register), and PRN
(Previous Register Number). SPl1 R is' the register number of the
operand specifier currently being evaluated by the Instruction
Buffer control logic. SP2 R is the register number of the operand
specifier which follows the specifier currently being evaluated by
the Instruction Buffer control logic.

In 11 Compatibility mode, the two register values are determined
by SRC R (Source Register) and DST R (Destination Register). The
SRC R and DST R numbers are defined by the register field of the
instruction. :

Note that in both modes, the ACN value may also select SC'BB:BG as
the address source for the RA and RB sets. This provision allows
the general registers to be sequentially indexed.

The RC register write operations are always longword data types.

The RA and RB register write operations are context dependent and
controlled by the UDT field of the microinstruction as follows:

UDT Field (Hex) Context

2 Longword (Long, Quad, Floating, or Double
Floating)

1 Word

2 Byte

3 Instruction Dependent. (Any of the above)

When the UDT field equals 3, the instruction decode 1logic
determines the data type to be used.

Certain USPO values (60:7F) provide individual control of the RC
and RA/RB register sets within the same microinstruction. These
USPO values allow the RC register to be written while the RA/RB
registers are read or vice versa. However, the contents of one
register set cannot be interchanged with the contents of the other
set in the same microinstruction.
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2.6.3.8 Register Log Stack (RLOG) and Program Counter Save
Register (PCSV) == The RLOG stack and PCSV register are used to
hold all the information required to restart an instruction.

The PCSV register is loaded with the lower 8 bits of the Program
Counter (PC ©7:80) at the time an instruction is fetched. From
this information, the entire 32-bit starting PC can be
reconstructed if a fault occurs. The remaining high order bits are
saved in the Instruction Physical Address (IPA) register of the
translation buffer. Only the lower 8 bits of the PC need to be
held by the PCSV register because no instruction is longer than
256 bytes. :

The RLOG stack contains a record of changes made to the Scratch
Pad Register Set during the instruction sequence (e.g.,
autoincrementation or autodecrementation of registers). If an
instruction causes a memory management fault requiring a macro
level trap, it is necessary to restore the general registers to
their original state. The information stored in the RLOG stack
allows reconstruction of the register contents so that the
instruction can be restored. Each RLOG entry contains an
ADD/SUBTRACT bit, the constant value used in the operation, and
the address of the register modified. Figure 2-68 shows the data
format of each RLOG entry.

RLOG
BIT POSITION 08 07 04 03 00

ADD/SUB KMX 03:00 RA ADDRESS 03:00

TK-0013

Figure 2-66 RLOG Entry Format
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The RLOG stack contains 16 locations. At each instruction fetch, a
pointer into the stack is initiated and an RLOG empty flag is
asserted. When the microcode fault routine reads the RLOG stack,
the pointer is decremented and the next entry in the stack becomes
available. The RLOG stack is written when the UALU field of the
microinstruction specifies an RLOG update. If the ULAU field
equals 6, the operation selected is A PLUS B (RLOG UPDATE) and
RLOG bit 8 is set to a 1. If the UALU field equals 1, the
opetationaselected is A MINUS B (RLOG UPDATE) and RLOG bit 8 is
set to a @.

The RLOG stack is read when the UMSC field of the microinstruction
equals 7 (READ 'RLOG). The current value is read from the stack and
the pointer is decremented at the end of the microinstruction.

2.6.4 Address Section

The Address Section of the data path consists primarily of a
virtual address register for memory data references, an
instruction buffer address register, and the program counter. The
address registers can be counted, thereby allowing the addresses
to be incremented without implementation of the arithmetic
section.

2.6.4.1 Instruction Buffer Address Register (VIBA) -- The VIBA
(Figure 2-61) holds the address of the instruction stream data
being fetched by the instruction buffer control logic. The lower
two bits of the address (VIBA 0l:00) are retained by the
instruction buffer logic. These two bits control the byte rotation
of data loaded from memory. _
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»VAMX 31:16
— ) TO MEMORY MANAGEMENT
CMP MODE —eVAMX 16:09 ) ocverem
—a=VA 08:02
VAMX\\\ lriz/r::Mx \
[)
VA 31:16 VIBA 15:09
VIBA 31:16 J
VIBA 15:09
o VIBA 31:02 VA 31:00
TO PC MX TO PC MX
- VA 01:00
VIBA 31:04 VIBA 03:02 VA 31:04 TVA 03:02 -
VIBA VA
VIBA L——COUT VIBA VA oo VA ——l VA
f I COUNT VIBA I I INC VA I
ALU 31:04 ALU 03:02 ALU 31:04 ALU 03:02 ALU 01:00
’ TK-0001

Figure 2-61

Instruction Buffer Address
Registers

and Virtual Address

The VIBA holds a virtual address which must be converted to a
physical memory address by the translation buffer.

The VIBA is controlled by the UIBC field of the microinstruction.
the VIBA is loaded with data from
the arithmetic section (ALU 31:02). The VIBA is loaded with a new
address whenever the instruction execution changes sequence.
Sequence changes occur in JUMP or successful BRANCH instructions
or in the initialization of a trap or interrupt routine.
instruction buffer control logic will increment the VIBA by four
whenever instruction data has been successfully fetched.

When the UIBC field equals 2,
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2.6.4.2 Virtual Address Register (VA) -- The VA (Figure 2-61)
holds the address generated by the microprogram to write or read
memory data to or from the data path. The VA will generally
contain a virtual address which must be converted to a physical
memory address by the translation buffer. However, the VA may hold
a physical address which the microprogram generated during the
translation process or when the memory management mechanisms have
been disabled.

The VA may also be used as an index to the translation buffer when
the translation buffer is being updated or invalidated by the
microprogram. During the execution of the PROBE instruction, the
indexing function is used to determine if an access violation
would occur if a memory reference was actually mode to that
particular virtual address.

The VA is controlled by the UVAK field of the microinstruction as
follows:

UVAK Field (BUS CS 25) Function

g HOLD
1 LOAD with ALU 31:00 (from arithmetic
section)

The VA is incremented by four when the UPCK field of the
microinstruction equals three. The load function will override the
incrementation if both functions are selected simultaneously.

2.6.4.3 Virtual Address Multiplexer (VAMX) -- The VAMX provides
an interface to the memory management subsystem (translation
buffer and cache). The VAMX is selected to provide the correct
format of the virtual address for VAX mode or 11 compatibility
mode. The VA or VIBA can be selected as the source for address
bits 31:09. Address bits 08:02 are always derived from the VA and
are not input to the VAMX. Address bits 01:00 are not sent to the
memory management subsystem since all memory references are made
on longword boundaries and the lower two address bits specify only
the byte location within the longword.

The state of the Compatibility mode bit in the Processor Status

Longword (PSL) determines which address format is selected in the
VMAX.
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The address source selection is provided by a signal from the
translation buffer. The VA is selected as the address source when
the microprogram requests a memory data reference. The VIBA is
selected as the address source when the microprogram requests
instruction stream data and the Instruction Buffer Control Logic
is allowed to use the cycle to request a memory transfer. Table
2-18 shows the address format for each mode and source selected.

2.6.4.4 Program Counter (PC) =-- The PC holds the address of the
instruction op code each time a new execution sequence is started.
The PC is incremented by an appropriate value as the operand
specifiers and the instruction are evaluated. The data source of
PC bits 31:04 is either the VIBA or VA (via the PCMX). The data
source of PC bits ©3:00 is either the VIBA, VA, or PC ADDER (via
the PCAMX).

Refer to Figure 2-62. The PC ADDER allows the PC to be incremented
by 1, 2, 4, or N. The instruction buffer control logic generates
the value N, incrementing the PC to point beyond instruction
stream bytes being evaluated.

) — PC 31:00 TO ARITHMETIC SECTION

PC 31:04 PC 03:00
PC PC
11
INC PC PC AMX 03:00
PC AMX
PC MX °3=°-OT IPC ADD 03:00
INC PC
/ pomx  \ PC ADDER
VIBA 31 :oz—T NMX 03:00
VA 31:00
#1 #2 #4
DELTA PC 02:00 (N)

TK-0002

Figure 2-62 Program Counter (PC) Register
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Table 2-18 VAMX Data Format

ADDRESS VIRTUAL ADDRESS FORMAT
MODE :
SOURCE VAMX OUTPUT ADDRESS BITS 08:02
3 09|08 02
VAX VA VA31:00 VA 08:02
3 09|08 02
VAX VIBA VIBA 31:09 VA 08:02
3 16 15 09|08 02
11 COMPATIBILITY VA 00 VA 16:09 VA 08:02
31 16 15 09{08 02
11 COMPATIBILITY VIBA 00 VA 16:09 VA 08:02
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The PC input selection is controlled by the UPCK field of the
microinstruction.

UPCK Field
Hex BUS CS 34 BUS CS 33 BUS Cs 32 Function Selected

NO-OP

VA input to PC
VIBA input to PC
Increment VA by 4
Increment PC by 1
Increment PC by 2
Increment PC by 4
Increment PC by N

NoOUua W HS
(TR XXX
YR e
FearFe e~

2.6.4.5 Program Counter Adder (PCADD) and Number Multiplexer
(NMX) -- The Program Counter Adder performs the function PC 03:00
PLUS NMX 03:00. The numbers 1, 2, 4, or N are selected by the NMX
to provide the proper increment value. The value N, generated by
the instruction buffer decode 1logic, may be 1, 2, 3, or 5. The
output bits of the PC ADDER (PCADD @3:00) are multiplexed by the
PCAMX which provides the input to PC bits ©63:08. If the PC ADD
function results in-.a carry, the upper 28 bits of the program
counter are incremented. The increment value selected by the NMX
is controlled by the UPCK field of the microinstruction (refer to
Paragraph 2.6.4.4).

2.6.4.6 PC Multiplexer (PCMX) and PC Adder Multiplexer {(PCAMX) --
The PCMX and PCAMX provide the data input to the Program Counter.
When the PC is initially loaded, the PCMX selects the VA or IBA as
the input source and the PCAMX selects PCMX 63:00. Therefore, 32
bits of the PCMX (VA 31:00 or IBA 31:02) are input to the PC at
the beginning of the instruction sequence.

When the PC is incremented, the PCAMX selects PCADD @63:008 as the
data source for the lower four bits of the PC and the input to the
upper 28 bits is disabled. The value of the upper 28 bits remains
unchanged unless the PC ADD function results in a carry.
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2.6.5 Data Section

The data section (Figures 2-64 and 2-72) provides the interface
for the transfer of data to and from the Memory Data (MD) bus and
Internal Data (ID) bus and also performs the shifting, byte
alignment and upacking of floating-point data types.

2.6.5.1 Data/Arithmetic Section Interface -- Data transfer
between the arithmetic and data sections is performed through the
DFMX, RAMX, and RBMX. Refer to Figure 2-64.

Data Format Multiplexer (DFMX) -- The DFMX allows data from the
Shifter (SHF) to be transferred in either integer or unpacked
floating-point format. If a floating-point instruction is being
executed, the Shifter data will be in the packed floating-point
format, as shown in Figure 2-63.

SHE 3 ' 1615 14 07 06
LOW FRACTION SIGN|  EXPONENT  |HiGH FRACTlOﬁ
TK-0007

Figure 2-63 Shifter Data in Packed Floating Point Format

2-122




1D BUS
BMX RBMX 31:00
T0 o BUS ID 31:00 BUS 1D P3:PO
T0 AMX RAMX 31:00
BUS ID B o
: TRANS
RAMX RBMX DRIVER
DREG 31:00
) DREG
QREG 31:00 DREG
Q REG
RSHFT LSHFT
Q REG K] t anrec
SHIFT INPUT SHIFT INPUT
/ amx \ r\\\
FROM ALU | DECIMAL CONSTANT } L | L~
cout DREG 31:00
D REG
R SHFT LSHFT
gass 1t _ores
Hi P !
ARITHMETIC DATA ET INPUT SHIFT INPUT
SECTION SECTION OMX .
' BUFF DREG 31:00
j [} (D NIBBLE SWAP)
BUS DFMX 31:00 DAL 31:00
’ MDAL 31:00
<<: DFMX BUS i:>
GENERAL
REGISTER DAL
DATA (GRD)
BUS
BUFF DREG 31:00
F SHF SHF SHF QREG 31:00
SHF SHF SH H
31 30 20:23 22:07 06:00 L— TO/FROM
FLOATING-POINT ACCELERATOR
— N
- -~
FROM SHF 31:00 T
SHIFTER

TK-0004

Data Section (Arithmetic Section Interface, Q and D
Registers, Data Aligner) ’

Figure 2-64
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The DFMX unpacks the floating-point format by reassembling the
fraction and removing the sign and exponent bits (Figure 2-65).

DFMX 3130 29 3 22 07 06 00
HIGH FRACTION LOW FRACTION
0 | 1 |(sHF 06:00) (SHF 31:16) 0000000
TK-0008

Figure 2-65 Unpacked Floating-point Format

If the integer format is selected, the Shifter data (SHF 31:00) is
transferred through the DFMX unmodified. Selection of the DFMX'
format 1is controlled by the UDK and UQK fields of the
microinstruction. If either field equals 8, integer format |is
selected. If either field equals 9, unpacked floating-point format
is selected.

If the UDK field equals A or the UQK field equals B, data from the
Floating-point Accelerator (FPA) is transferred to the DMX or QMX
via the DFMX bus.

Register AMX (RAMX) and Register BMX (RBMX) Multiplexers =-- The
RAMX allows selection of either the D register or the Q register
to be transferred to the A input multiplexer of the arithmetic
section. The RBMX allows.selection of either the D or Q register
to be transferred to the B input multiplexer. ‘

2.6.5.2 Holding Register and Data Aligner -- The holding
registers provide temporary storage for data generated in other
sections and the data aligner performs the required shifting for
certain operations. Refer to Figure 2-64.

Q RegiSter -- The Q register is used for the following purposes:

During the execution of field and double floating-point
instruction, the Q register is used in conjunction with the D
register to hold data types larger than 32 bits.

In the execution of multiply and divide instructions, the Q
register stores the multiplier and quotient bits.

During the evaluation of instruction operands, the Q register
stores the first operand while the subsequent operand is
being evaluated. :
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The Q register is capable of a right or left shift by one bit. The
UQK field of the microinstruction determines if the Q register is
to be loaded with the contents of the Q register multiplexer (QMX)
or if the current contents of the register are to be shifted. The
UQK field also allows the register to be shifted twice to the
right or left. Table 2-19 shows the relationship between the UQK
field value and register control.

If the function selected is a register shift, the value shifted
into the vacant bit positions is determined by the Shift Input
(USI) field of the microinstruction.

USI Field Q Register Shift Input

[} ALU CARRY 31

1 Q Register (Bit 31) .
2 D Register (Bit 31)
3 "}

4 0

5 ALU CARRY 31

6 0 ‘

7 1l

If the UQK field equals 8-F, the Q register is loaded with the
output of the QMX. The data selected by the QMX is determined by
the UQK value. '

Q Register Multiplexer (QMX) -- The QMX provides the data source
for the Q register. The QMX allows selection of either the DFMX, D
register, Internal Data (ID) bus, or a decimal constant (6) in
each nibble of the multiplexer. The UQK field of the
microinstruction controls the QMX selection. Refer to Table 2-240.
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‘sals

Table 2-20 QMX

Selection

UK FIELD
BUS CS
HEX QMX DATA SELECTED
84 §3 52 51
31 00
8 1 0 0 o] DFMX 31:00 (INTEGER FORMAT)
3 00
9 1 0 0o 1 || DFMX 31:00 (UNPACKED FORMAT) B
3 827 2423 2019 1615 1211 0807 0403 00
Al 1 0 1 offo1 1 do1 1 0o 1 1do1 10011 do1 1o 11 do of
31 ' 00
B 10 1o || FLOATING-POINT ACCELERATOR DATA |
31 00
c 1 1 0 0 D 31:00 |
31 00
0 11 0 1 RESERVED 1
31 00
E 1o o | ] BUS 1D D31:00 |
31 00
F L S B ZEROES |

*DECIMAL 6 IS INPUT TO EACH QMX BYTE ONLY IF AN ALU CARRY IS GENERATED
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The constant input to the OMX (6,5) is required when decimal
arithmetic is being performed. The é%llowing example demonstrates
the need for the constant input.

Example 1 Decimal Binary
91ﬂ 1001
plus 1 plus 0001
--12 ——
18,4 l9la

1010 is not the correct BCD equivalent of 18,4 Two 4 bit nibbles
are required to represent a two digit 3ecima1 number. To
accomplish this, the first binary number is adjusted (by adding a
decimal 6 or binary 0110) before being added to the second binary
number, shown as follows:

glﬂ 1001

plus lm pPlus g110 (decimal 6)
10 1111
19 plus 2001

0081 9000 (decimal 10)

The constant 6 is used to provide the necessary carry in decimal
addition and the necessary borrow in decimal subtraction,
demonstrated in the following examples. :

Example 2 Decimal Addition

Decimal Binary Representation
1410 0001 0100 (141 )
plus 710 plus 0110 0110 (decgmal 6 added to both
-—=—  eececcccccccaa- nibbles) ’
211a g111 1016 (adjusted binary values)
plus 0008 2111 (0716)
nc 1000 ¢ 0001 (c indicates carry .
generated, nc indicates
no carry)
1000 #0201 To obtain the proper
minus o110 0008 binary representation,
------------- decimal 6 is subtracted
2110 0010 0001 from a nibble if there
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that nibble addition. If
a carry was generated,
zZero is subtracted.




Example 3 Decimal Subtraction

Decimal Binary Representation
1416 0001 0100 (1410)
minus 7 minus 0000 9111 (0735,)
7m nb 20061 b 1101 (b indicates borrow
required, nb indicates no
borrow)
9000 1141 To obtain the proper
minus 0000 0110 binary representation,
————————————— decimal 6 is subtracted
710 0000 2111 from each nibble that
required a borrow. If a
borrow was not required,
zero is subtracted.
D Register -- The D register is used for the following purposes:

Provide temporary storage for data received from the Memory
Data (MD) bus.

Provide temporary storage for data to be transmitted to the
Internal Data (ID) bus. When the D register is used for ID
bus write operations, odd parity is generated for each byte
of data. Parity is not checked on data received from the ID
bus.

When used in conjuction with the Q register, the D register
holds data types larger than 32 bits.

The UDK field of the microinstruction determines if the D register
is to be shifted to the right or left (by one or two bits) or if
the D register is to be loaded with the output of the D Register
Multiplexer (DMX). Table 2-21 shows the relationship between the
UDK field value and D register control.

If the UDK field specifies a D register shift, the value shifted

into
(USI)

the vacant bit positions is determined by the Shift Input
field of the microinstruction.

USI Field D Register Shift Input

Nooubswn e

Q Register (Bit 31)
Q Register (Bit 00)
e
)
0

Q Register (Bit 31)
ALU 0l1/ALU 00
ALU 01l/ALU @0
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If the USI field equals 6 or 7 and the D register is selected for
a double shift, ALU bit 00 is input to the D register on the first
shift and ALU bit @1 is input on the second shift. If a single
shift has been selected and USI equals 6 or 7, ALU bit 01 will be
shifted in.

The D register is loaded with the output of the DMX when the USK
field equals 8-F. The data selected by the DMX is determined by
the UDK value.

D Register Multiplexer (DMX) -- The DMX provides the data source
for the D register. The DMX allows selection of either memory data
through the memory data aligner (MDAL), the DFMX, buffered D
register for the D nibble swap function, or the data aligner
(DAL). The selection of the source is determined by the value of
the UDK field of the microinstruction. Refer to Table 2-22.
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Table 2-22 DMX Selection

UDK FIELD
HEX BuS CS DMx
91 90 89 88 DATA SELECTED
31 00
o |0 o o o MDAL 31:00 (NOTE 1) |
31 00
8 [1 0 o o DFMX 31:00 (INTEGER FORMAT) |
31 . 00
9 1 0 0 1 DFMX 31:00 (UNPACKED FORMAT)
N 00
A 1. 0 1 0 FLOATING-POINT ACCELERATOR DATA |
3 24 23 16 15 08 07 00
8 [1 o 1 1|[ surForecor:o0 | BUFFDREG15:03 | BUFFOREG23:16 | BUFF DREG 31:24 |
3 00
c |+ v 0o off DAL 31:00 (Q REG 31:00: NOTE 2) |
31 , 00
D 1 1 0 1 " DAL 31:00 (SHIFTED BY SC 09, 04:00; NOTE 2)
3 00
E 11 1 o] DAL 31:00 {SHIFTED BY SHF VAL; NOTE 2) |
3 00
F 11 1 ZEROES
Note 1: When the UDK field equals @ and the signal MD TO D is
generated by the SBI control board, the DMX selects the
Memory Data aligner as the data source for the D
register.
Note 2: When the UDK field equals C, the DAL performs a data

shift of 32 bits which results in Q register bits 31:00
on its output. '

When the UDK field equals D, the DAL shift is determined
by Shift Count (SC) register bits @9 and 04:00.

When the UDK field equals E, the DAL shift is determined

by a number (NORM SHF VAL) generated to normalize the
fraction in floating-point instructions.
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If the UDK field equals B, the DMX selects D register data which -
has been buffered and reformatted. This function is referred to as
decimal nibbles swap and is required to perform decimal
arithmetic. The bytes of data are swapped as shown in Figure 2-66.

D REGISTER 31 4 23 16 15 08 07 0g
BYTE3 T BYTE2 BYTE 1 BYTEO
D NIBBLE SWAP
DMX 31 24 23 1615 08 07 00
|- BYTEO _’L BYTE 1 BYTE 2 BYTE 3
' TK-0009

Figure 2-66 Decimal Nibble Swap

A decimal nibbles swap is required prior to performing decimal
arithmetic to compensate for the format in which decimal numbers
are stored in memory. For example, the decimal number +12345678
would be in consecutive memory byte locations as shown in Figure
2-67.

st 3 4 3 o BYTE LOCATION

1 2 0

3 4 1

5 6 2

7 8 3

+ 4

5

6

TK-0281

Figure 2-67 Memory Storage of a Decimal Number
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If the longword containing this decimal number was accessed from
memory, it would be loaded into the D register in the format shown

in Figure 2-68.

D REGISTER
Byte3 Byte 2 Byte 1 Byte O

7 8|5 6]3 4|1 2

TK-0282

Figure 2-68 Format of a Decimal Number Loaded from Memory

The data must be swapped and loaded into the DMX in the format
shown in Figure 2-69 which correctly represents the decimal
number.

D REGISTER

TK-0253

Figure 2-69 Format of Swapped Decimal Number

Data aligner (DAL) -- The DAL performs the shifting of D register
contents to the right or left by a maximum of 32 bits in each
direction. The contents of the Q register are shifted into the;
vacant bit positions as shown in Figure 2-70.

RIGHT SHIFT
-

Q31:00 D 31:00 Q31:00

LEFT SHIFT

TK-0010

Figure 2-7¢ DAL Shift Format

2-134




The DAL is used during the execution of bit field, multiply,
divide, shift, decimal arithmetic, and floating-point
instructions. The shift operation is also used to isolate bit
fields in the virtual to physical address translation.

The DAL actually consists of three levels of shifters, with the
output of the lower levels providing the source for the inputs of
-the next higher level (refer to Table 2-23 and Figure 2-71). The
result is an adding effect of the shift performed at each level.
Level 1 of the DAL allows left shifting by @, 16, 32, or 48 bits.
A left shift by 32 has the same effect as shifting right by 32
bits and a left shift by 48 has the same effect as a right shift
by 16. Level 2 performs a left shift by @, 4, 8, or 12 bits and
the final DAL level performs a left shift by @, 1, 2, or 3 bits.
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l

Q REGISTER

D REGISTER

BUFF DREG 31:00

DAL 31:00

DAL .

DAL LEVEL 1
DAL LEVEL 2

DAL 31,27,23, 19, 15, 11,07,03
DAL 30, 26, 22, 18, 14, 10, 06, 02
prem—————————
DAL 29, 25, 21, 17, 13,09, 05, 01
e e
DAL 28, 24, 20, 16, 12, 08, 04, 00
M.

QREG 31:00

DALK 1—o

DALK 0—»

DALL1 DREG 31:16
s

DALL1 DREG 15:00
PRt~y

DALL1 QREG 31:16
r————

Y3 Y2 Y1 Y0
, DAL
1312 1110 111213

DALL2

)
D 31,27,23,19, 15, 11.07;03-—-T

D 30, 26, 22, 18, 14, 10, 06, 02
D 29, 25, 21, 17, 13, 09, 05, 01
D 28, 24, 20, 16, 12, 08, 04, 00
D 27, 23,19, 15, 11, 07, 03, Q31
D 26, 22, 18, 14, 10, 06, 02, Q29

D 25, 21, 17, 13, 09, 05, 01, Q28

DALL2 DREG 31:28, 15:12, QREG 31:29

DALK 5 —o»
DALK 4 —»

DALL2 DREG 27:24, 11:08

pr——— .
DALL2 DREG 23:20, 07:04
r————

DALL2 DREG 19:16, 03:00

[r—

Y3 Y2 Y1 YO Y3 Y2 Y1 Y0
DAL LEVEL 1 DALK 3 = DAL LEVEL 2
DALK 2 —
13 12 11 10 1-1 1-2 13 13 12 1110 141 12 13
L L DALL1
QREG 31:16 D 07:04, Q 23:20
BUFF DREG 15:00 — D 11:08, Q 27:24
BUFF DREG 31:16 D 15:12,Q31:29
QREG 15:00 D 19:16, D 03:00, Q 19:17
QREG 31:16

BUFF DREG 15:00

D 23:20, D 07:04, Q 23:21

BUFF DREG 31:16

D 27:24,D 11:08,Q 27:25

Figure 2-71 Data
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The adding effect of the shift levels of the DAL is demonstrated
as follows:

Example 1
Level 1 Left Shift by 16
Level 2 plus Left Shift by 12
DAL plus Left Shift by 3

DAL Output = Left Shift by 31

Example 2
Level 1 Right Shift by 16
Level 2 plus Left Shift by 12
DAL plus Left Shift by 3

DAL Output = Right Shift by 1

The shift value selected by the DAL is determined by the Shift
Count register (SC09, @4:08) or by a number (NORM SHF VAL)
generated to normalize the fraction in floating-point
instructions. The UDK field of the microinstruction (refer to
Table 2-22) selects the source of the DAL control.

Table 2-24 shows the relationship of the level selection and DAL
output for the range of shift values available.
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2.6.5.3 Memory Data Interface -- Data from memory is transferred
to and from the data section via the Memory Data (MD) bus. Data in
memory must be read or written on longword boundaries. However,
references to memory locations by the data section are made on
byte boundaries. Therefore, transfer of information between the
data section and memory requires that the bytes of data be
properly aligned. The required alignment is provided by the Memory
Data Aligner (MDAL), Byte Aligner (BAL), BUS MD Parity Aligner,
and BUS MD Mask generator. Refer to Figure 2-72.

Memory Data Aligner (MDAL) =-- If a memory read operation is
specified, the D register is loaded with the data on the MD bus
via the MDAL and D register multiplexer (DMX). The MDAL reformats
the data from the MD bus before it is transferred to the DMX. Data
on the MD bus is longword aligned and must be shifted according to
the byte address on which the memory reference was made. The
shifting of MD data types is controlled by the value of the 1low
two bits (VA@Gl, VAGO) of the memory reference address. These two
bits specify a byte location in the longword. The MD data is
shifted by the MDAL as shown:

vagl VAQS Memory Data

2 2 Byte 3, Byte 2, Byte 1, Byte @
0 1 Byte @, Byte 3, Byte 2, Byte 1
1 2 Byte 1, Byte @, Byte 3, Byte 2
1 1 Byte 2, Byte 1, Byte @, Byte 3
<:: MD BUS ::>
BUS MD BYTE
BUS MD 31:00 BUS MD MASK 03:00
03:00 PAR BUS MD 31:00
BUS MD
BAL PARITY BUS MD BYTE 3| BYTE 2|BYTE 1] BYTEO
ALIGNER MASK (31:24) §(23:16) ¢(15:08) ¢ (07:00)
BYTE 3JBYTE 2§ BYTE 1JBYTEO t _ -
(31:24) | (23:16) | (15:08) | (07:00) P3fP2|P1}PO MDAL
BUFF DREG 31:00 D BYTE 03:00 EVEN '
D REG MEM REF|
PARITY DATA TYPE
DREG 31:00
| DT= DT=8 SEC
S LFQD __ REF
D RE ’FROM \
MEMORY REFERENCE
AND DATA TYPE LOGIC
DMX
MDAL 31:00
TK-0008

Figure 2-72 Data Section (Memory Data Bus Interface)
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As an example of memory data alignment, assume the central
processor references memory address 2082. The data transferred over
the MD bus will begin on longword boundary 200.

Memory Data
Byte 3 Byte 2 Byte 1 Byte §

Addresses of data transferred .
over the MD bus 203 202 201 200

The low two bits of the memory reference address (202) are 1, 6@.
The MDAL shifts the bytes into a format which will load data from
memory location 282 into the first byte of the D register.

D Register
Byte 3 Byte 2 Byte 1 Byte 0

Addresses of data loaded .
into the D register 201 200 2083 202

If the instruction specifies a byte data type, only byte 0 of the
D register would contain useful data after the memory read. The
RAMX or RBMX would zero or sign extend the D register before it is
transferred to the arithmetic section. If a word data type was
specified, bytes @ and 1 would contain valid data. ‘

A second memory reference is required if a longword data type was
specified in this example. Since the referenced longword begins on
byte boundary 202, only half of the data could be loaded on the
first fetch. Memory location 286 (202 plus 4) is referenced on the
second fetch. The data transferred over the MD bus on the second
reference would begin on longword boundary 204.

Memory Data :
Byte 3 Byte 2 Byte 1 Byte 8

Addresses of data transferred
over the MD bus 207 206 205 204

The low two bits of the memory reference address (206) are still
1, 8. The MDAL will shift the data so that memory byte 204 will be
loaded into byte 2 of the D register.

D Register
Byte 3 Byte 2 Byte 1 Byte @
Addresses of data loaded
into the D register 285 204 207 206

The D Register Write Enable logic prevents bytes 1 and @ of the D
register from being written over on the second read operation.
Only bytes 2 and 3 will be enabled. The two memory references
would result in data being loaded into the D register as shown.
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D Register
Byte 3 Byte 2 Byte 1 Byte @

Addresses of data loaded .
into the D register 205 204 203 202

The D Register Write Enable logic controls the loading of the D
register on a per byte basis. All bytes are written on the first
memory reference. If,a second reference is required, the enabling
of the D register bytes is dependent on the data type of the
reference and .the low two bits of the byte address (VAGl, VA@Q).
Table 2-25 shows which operations require a second reference- and
the D register bytes which are enabled.

Table 2-25 D Register Write Enable

Data Second Reference | D Register Byte Enable
Type |VA@Gl | VABO | Required Byte 3 | Byte 2 |[Byte 1| Byte @
Byte | @ 2 no 1 1 1 1

2 1 no 1 1 1 1

1 0 no 1 1 1 1

1 1 no 1 1 1 1
Word | @ 9 no 1 1 1 1

2 1 no 1 1 1 1

1 ) no 1 1 1 1

1 1 yes ) 2 1 9
Long-
word | @ g no 1 1 1 1

2 1 yes 1 "] 2 2

1 ) yes 1 1 @ )

1 1 yes 1 1 1 2
Byte Aligner (BAL) -- If a memory write operation is specified,

data from the D register is transferred to the MD bus through the
BAL. The BAL functions identically to MDAL but in the reverse
direction. The D register contents are reformatted by the BAL so
that the bytes of data are loaded into the correct memory byte
address. The shifting of D register data is controlled by the
value of the lower two bits of the memory reference address (VA®dl,
VADG0)

The D register data is shifted by the BAL as shown:
VAgl VADS D Register Data

Byte 3, Byte 2, Byte 1, Byte
Byte 2, Byte 1, Byte 8, Byte

Byte 1, Byte @, Byte 3, Byte
Byte @, Byte 3, Byte 2, Byte

e S
~HeQ
o we
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BUS MD Parity Aligner -- The D register parity generator provides
one parity bit for each byte of data. 0dd parity is generated. The
parity bits are transmitted with the D register data over the ID
bus and MD bus. When parity is transmitted over the MD bus, each
parity bit must be aligned with its associated data byte. The BUS
MD Parity Aligner provides the required rotation of the parity
bits. The lower two bits of the memory reference address (VAOl,
VAOQ) determine the bit rotation as shown:

VA8l VA@Q D Register Parity

(] # ~ Pp3, P2, Pl, PO
0 1 p2, Pl, PO, P3
1 ) Pl, PO, P3, P2
1 1 P@, P3, P2, Pl
BUS MD Mask Generator -- During memory read or write operations, a

byte mask field is generated by the data section and transmitted
over the MD bus. In a read operation, the mask field specifies
which byte or bytes of a longword should be checked by the memory
controller for data integrity. In a write operation, the Mask
field allows the writing of an individual byte or bytes of a
memory longword. If a second memory reference is required due to
the -starting memory address and data type, a second mask field is
generated. Table 2-26 shows the BUS MD Mask generated for each
memory address and data type. If a second reference is required,
the associated mask field is also shown.

Table 2-26 BUS MD Byte Mask

Data Second Reference | Mask #1/ | BUS MD BYTE MASK
Type | VAGl | VA@@ | Required Mask $2 3 2 1 2
Byte 0 ) no 1 2 2 ) 1
2 1 no 1l "} "} 1l 2
1l 0 no 1l 0 1l 0 0
1 1 no 1 1 2 0 ")
Word 0. 2 no 1 ("] [*] 1 1
"] 1l no 1l 0 1l 1l "]
1l ) no 1 1l 1l 0 "]
1l 1 yes 1 1 2 2 g .
2 e o0 8 1
Long- :
word "] 0 no 1l 1l 1l 1 1l
"} 1 yes 1 1 1 1 "]
2 2 ] "} 1
1l ') yes 1 1l 1l 0 2
2 0 ') 1 1l
1 1 yes 1 1 ) 2 )
2 "} 1l 1l 1
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2.6.6 Exponent Section

The exponent section of the data path processes the exponent value
of floating-point numbers. Exponent processing is performed in
parallel with the fraction processing performed in the arithmetic
and data sections. The 10-bit data path of this section consists
of an 8-bit exponent and 2-bit overflow/underflow code.

A packed floating-point number is formed in the arithmetic section
via the BMX (ALU B-Input MUX). The exponent is taken from the EALU
of the exponent section, the fraction is taken from the D register
of the data section, and the sign of the destination fraction (SD)
is determined by the USGN field of the microinstruction. The BMX
formats the floating-point number as shown in Figure 2-73.

BMX 31 16_15_ 14 07 06 00
D23:08 SD EALUO7:00 | D30:24 ']
ON)

(LOW FRACTION) (SIGN)| (EXPONENT) | (HIGH FRACTI

TK-0011

Figure 2-73 BMX Data in Packed Floating-Point Format

The exponent is transferred back to the Shift Count Mux (SMX) of
the exponent section via the ALU (bits 14:87). The entire
floating-point number is transferred through the ALU and Shifter
(SHF) of the arithmetic section and into the Data Format Mux
(DFMX) of the data section. The DFMX unpacks the floating-point
number and reassembles the fraction for processing.

The exponent section of the data path is also used to generate
values for the Shift Count (SC) register. The SC register is
implemented in both the arithmetic and data sections for various
functions.

2.6.6.1 Exponent Arithmetic Logic Unit (BALU) -- The EALU is the
processing unit of the exponent section. The function performed by
the EALU is selected by the UEALU field of the microinstruction:
(refer to Table 2-27).

The EALU output is fed into a negative absolute value (NABSV) ROM
and an exponent multiplexer (EXP MUX). Refer to Figure 2-74. The
EXP MUX selects the NABSV ROM input when the UALU field equals 7.
The ROM provides the required shift value for floating-point
arithmetic alignment.
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/ EXPMUX \

[ )
TNABS EALU D 07:00

EALU 09:00

NABS ROM

IEALU 07:00

EBMX 09:00 EAMX 09:00
EBMX 09:08 . EAMX 07:00
EBMX 07:00 EAMX 09:08
/ EBMX \ EBMX EAMX / EAMX  \
1
T T 1 '1—' sC 09:08? SC 07:00 ? STATE 07:0C
KMX 09:08 :
— NORM SV 04:00
FE 07:00
FE 09:08 AMX 14:08 SC
e KM X 07:00
SMX
[ T_ .
FE 09:00 ALU.14:07 (EXP)
ALU 09:00 (DATA)
FE EXP D 09:00 STATE
IEXP D 09:00 EXP D o7:ooT
TK-0003

Figure 2-74 Exponent Section
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The requirement for the NABSV ROM can be demonstrated by the
following examples:

ADD 71G plus 1210

The two operands represented as binary normalized floating-point
numbers are:

7 g = <111 x 23 a Exponent = 3 Fraction = .111
1510 = ,1100 x 2 Exponent = 4 Fraction = .11

To perform the floating-point addition, the exponents of the two
operands must be equal or aligned. This requires shifting of the
fraction associated with the smaller exponent.

To begin execution, the operands are stored in the following
registers: ' .

(a) Source exponent (3) is stored in the FE register.

(b) Destination exponent (4) is stored in the SC register.
(c) Source fraction (.1l1l1]) is stored in the D register.

(d) Destination fraction (.ll) is stored in the Q register.
(e) Both fractions are stored in temporary registers.

The selection of EALU function SC-FE (4--3) yields a result of
positive 1. This result indicates that the fraction associated
with the smaller exponent must be shifted by one bit position so
that it is aligned with the fraction associated with the larger
exponent. In order to align the fractions, a right shift or
negative shift value is required. Therefore, if the result of the
exponent subtraction is positive, the NABS ROM output is selected
by the EXP MUX.

In this example, the output of the EALU is a positive 1 which
results in the NABS ROM being selected. The output of the NABS ROM
is a negative 1 represented in 2's complement form (FF). The
output of the EXP MUX is 3FF because the two most significant bits
are hardwired ones.

As previously mentioned, the fraction associated with the smaller
exponent must be shifted to align the operands. However, only the
D register contents can be shifted and in this example the smaller
fraction was stored in the Q register. The contents of the Q
register must first be loaded into the D register and then the D
register is shifted by the value resulting from SC-FE. In this
example, the D register contents are right shifted by 1 bit. The
fraction associated with the larger exponent is loaded into the Q
register from the temporary storage register and the two fractions
can then be added.
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2.6.6.2 EALU A-Input Multiplexer (EAMX) -~ The EAMX provides the
data source for the A input of the EALU. The EAMX allows selection
of either the State register or Shift Count (SC) register. The
State register is selected with the UMSC field of the
microinstruction equals 5 (LOAD STATE REGISTER). Otherwise, the
shift Count register is selected by the EAMX.

2.6.6.3 EALU B-Input Multiplexer (EBMX) -- The EBMX provides the
data source for the B input of the EALU. The EBMX allows selection
of either the Floating Exponent (FE) register, AMX from the
arithmetic section, Normalized Shift Value (NORM SV) from the data
section, or the Constant Multiplexer (KMX) from the arithmetic
section.

When exponents are being processed, the EBMX receives the exponent
from the FE register or from the exponent field of the AMX (bits
14:07). .

The constant input (KMX 07:00) or shift value input (NORM SV
P4:00) is selected to allow the Shift Count (SC) to be updated.
The constant input may also be used to set or clear flags in the
State register. ‘ )

The shift value (NORM SV), generated in the data section, is the
number of left shifts necessary to normalize the contents of the D
register (i.e., fraction part of the floating-point number). The
normalized fraction is generated by left shifting the D register
contents until the most significant 1 of D register data is in bit
position 31l. -

Input selection of the EBMX is controlled by the UEBMX field of
the microinstruction.

UEBMX Fileld
Hex BUS CS 19 BUS CS 18 EBMX Data Selected

FE 09:00

KMX 09:00

AMX 14:07 (exponent field)
NORM SV @4:00

W e
- aw
o k)

2.6.6.4 Ploating Exponent Register (FE) -- The FE register is
used to hold exponent or temporary values to be processed in the
exponent section. The FE register is loaded with the output of the
Exponent Multiplexer (EXP D 09:00) when the UFEK field (BUS CS 24)
of the microinstruction equals 1.

2.6.6.5 State Register -- The State register consists of 8 flag
bits, generated by the microprogram to control program flow. A 16
way branch condition in the microsequencer is created by each
4-bit group of the State register. A microinstruction may set or
clear individual bits in the State register through the use of the
logic operations of the EALU and constants from the KMX.
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The State register is loaded with the output of the Exponent
multiplexer (EXP D ©7:00) when the UMSC field of the
microinstruction equals 5.

2.6.6.6 Shift Count Multiplexer (SMX)
The SMX allows data to be transferred from the arithmetic section
to the exponent section.

The SMX provides the path for a 10-bit data field (ALU @9:00) or
an 8-bit exponent (ALU 14:07) from the ALU of the arithmetic
section to the Shift Count register of the exponent section.

The SMX also allows selection of the Exponent multiplexer (EXP D
89:00) or Floating Exponent register (FE 09:00) as a source for
the Shift Count (SC) register. The Exponent Multiplexer source
allows the contents of the SC register to be incremented or
decremented using the EALU. The FE register source is provided to
allow the contents of FE and SC to be swapped in a ‘single
microinstruction.

The data type selected by the SMX is controlled by the USMX field
of the microinstruction. ,

USMX Field
Hex BUS CS 17 BUS CS 16 SMX Data Selected

@ ) "} EXP D 09:00

1 ') 1 FE 09:00

2 1 ) ALU 09:80 (data field)

3 1l 1 ALU 14:07 (exponent field)

2.6.6.7 Shift Count Register (SC) -- The SC register is used for

various functions within the CPU.

Area of CPU Function of SC

ID Bus Control SC ©5:80 address an internal processor
register word

Data Section SCP9 and SCP4:00 control the shift amount in
DAL

Arithmetic Section SC@4:00 control the bit mask generator and
SC@3:00 address the scratch pad register sets

Exponent Section SC register used to store exponents or data.
The SC register is loaded with data from the Shift count

Multiplexer (SMX@9:80) when the USCK of the microinstruction (BUS
CS 23) equals 1.
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2.7 INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions are the notification of events within
the system which require the execution of software outside the
current flow of control. These events cause the processor to
transfer control from that of the currently executing process to a
routine which can handle the interrupt or exception condition.

Exceptions are the notification of events which are relevant to
the currently executing process and are normally serviced by
software in the context of the current process.

Interrupts are the notification of events which are generally
independent of the currently executing process and are serviced in
a system wide context.

Certain interrupts and exceptions require high priority service
while others must be synchronized with independent events. The
priority logic in the processor determines the -order in which
events will be serviced. The priority associated with an interrupt
is termed its interrupt priority 1level (IPL). Most exception
service routines execute at the lowest interrupt priority 1level
(IPL 0). However, exceptions which represent serious system
failures raise the IPL to the highest level (IPL IF hex). This
minimizes the processor interruption until the problem has been
completely serviced. Paragraph 2.7.1.1 provides an explanation of
the processor priority logic and the interrypt priority 1levels
assigned. ' -

Generally exceptions and interrupts are very similar. When either
is initiated, the processor status longword (PSL) and the program

counter (PC) are pushed onto the stack. However, there are a
gumber of differences between exceptions and interrupts, listed as
ollows;

Exception Interrupt
a. Caused by the execution of a. Caused by an activity in
the current instruction. the system that may be
independent of the current
instruction.

b. Usually serviced in the b. Serviced independently

context of the process from the currently running
that produced the process.
exception condition.

c. IPL of the processor |is c. IPL is aiways changed when
usually not changed when an interrupt is initiated.
an exception is initiated.

d. Service routines normally d. Service routines normally
execute on a per-process execute on a per-CPU stack
stack (usually KSP). (ISP).
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e.

f£.

Enabled exceptions are
initiated immediately,
regardless of the current
processor IPL.

Most exceptions cannot be
disabled. However, if an
event causes an exception
that is presently
disabled, the exception
will not be initiated even
if it 1is subsequently
enabled. .

The previous mode field in
the PSL indicates the mode
of the exception.
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e.

f.

Interrupts are not
serviced until the
processor IPL drops below
the IPL of the requesting
interrupt.

If an interrupt condition
occurs while the interrupt
is disabled (i.e., the
processor is at the same
or higher IPL), the
interrupt will eventually
be 1initiated when the
enabling conditions are
met.

The previous mode field in
the PSL is always set to
Kernel. .




2.7.1 Interrupts

The processor services interrupt requests at the end of
instructions or at defined points during the execution of 1long,
iterative instructions (e.g., string instructions). Each interrupt
condition is assigned a request 1level. During the execution of
each instruction, the interrupt requests are sampled and
prioritized by the processor. When the priority of the interrupt
requests is higher than the current IPL (bits 20:16 of the
processor status longword), the processor will raise the IPL and
service the interrupt request. The interrupt will cause the
processor status longword (PSL) and the program counter (PC) of
the next instruction to be pushed on the kernel or interrupt
stack.

2.7.1.1 1Interrupt Priority Level (IPL) -- Interrupt requests can
be received from devices, controllers, or the processor itself. As
previously mentioned, each request is assigned a 1level which
determines the order in which multiple interrupts will be
serviced. The processor has 31 interrupt priority 1levels (IPL),
divided into 15 software levels (91 to OF, hex) and 16 hardware
levels (10 to 1lF, hex). User programs and most exception service
routines are run at process level, which can be thought of as IPL
G.

The interrupt requests are sampled during the execution of each
instruction. The software and hardware requests are clocked into
the priority logic from the hardware interrupt (HIR) and software
interrupt (SIR) registers. Refer to Figure 2-75.

The priority encoder 1logic selects the highest interrupt 1level
requested and will generate an interrupt level active code (IPL
ACT 04:00). The IPL active bits are compared with the interrupt
priority 1level (IPL) of the current process contained in bits
20:16 in the processor status longword (PSL) register. If the
priority 1level of the interrupt request is greater than the
current interrupt priority level and no exceptions occurred during
the instruction, INTR REQ is generated and a branch at A fork in
the microcode flow is taken to the interrupt service routine. The
IPL ACT code is also used to generate the interrupt vector as.
described in Paragraph 2.7.1.3. Table 2-27 shows the interrupt

conditions and the priority level and vector assigned to each. :

2.7.1.2 Vectors -- Vectors are longword addresses in memory whose
contents point to interrupt or exception service routines and
determine how the event is to be serviced. The low two bits of the
vector contents define the manner in which the event causing the
interrupt or exception will he serviced. Bits 01:00 of the vector
contents are interpreted as follows:
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Bit 1 Bit @ Operation

%] 7] This event is to be serviced on the kernel stack
unless already on the interrupt stack.

"} 1 This event is to be serviced on the interrupt
. stack. If this event is an exception, the IPL is
raised to 1F (hex).

1 () - This event is to be serviced by microcode in the
writable diagnostic control store. Bits 15:02 of
the vector contents are used as a parameter by
code in WCS.

1 1 The operation is a halt.

When bits 01:00 specify codes @ or 1, bits 31:82 of the vector
contents contain the virtual address of the service routine.

‘Separate vectors are defined for each interrupt and class of
exceptions. All vectors are contained in a page of memory named
the system control block (SCB). The system control block base
register (SCBB) is an ID bus register (ID bus address = 3B, hex)

g?ici contains the physical page address of the system control
ock.

Specific 1longword addresses (interrupt vectors) are .formed by
adding hardware generated vector bits 08:02 to the system control
block base register. Bits @8l:00 are zero since the vector
generated is the physical longword address of a specific location
in the SCB. The contents of each vector point to the service
routine which handles the event causing the interrupt. Figure 2-76
illustrates the manner in which interrupt vectors are formed.
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IPL4:O

FROM PSL
, COMPARE |INTR REQ
IPLACT 4:0 | LOGIC
IPL ACT 4:0
f—————————e TO VECTOR PROM
IPL ACT 4 IPL ACT 3:0
NO LEVEL D REQ
NO LEVEL C REQ SEL
0 coms -——/m ACT MUX
NO LEVEL B REQ LOGIC
NO LEVEL D REQ NO LEVEL C REQ NO LEVEL B REQ NO LEVEL A REQ
LEVEL D LEVELC LEVEL B LEVEL A
PRIORITY PRIORITY PRIORITY PRIORITY
ENCODER ENCODER ENCODER ENCODER
3 .
HIR IF:18 HIR 17:10 SIR OF:08 SIR 07:01
HIR SIR
| HARDWARE GENERATED SOFTWARE GENERATED
INTERRUPTS (IPL 1F:10) INTERRUPTS (IPL OF:01)

Figure 2-75
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Table 2-28 1lists the priority level of each interrupt and the

vectors assigned.

Table 2-28 1Interrupt Priority Levels and Vector Assignments
IPL ACT INTERRUPT CONDITION VECTOR PRIORITY
1F NONE ASSIGNED X HIGHEST
1E CPU POWER FAIL ec
1D CPU TIMEOUT 60
1c SBI FAULT 5C
1B SBI ALERT 58
1A CRD/RDS 54
19 SBI SILO COMPARE 50
18 INTERVAL TIMER Co
17 SBI REQ 7 1C@ TO 1FC
16 SBI REQ 6 180 TO 1BC
15 SBI REQ 5 140 TO 17C
14 SBI REQ 4 166 TO 13C

CNSL RECEIVE INTR F8 :

CNSL TRANSMIT INTR FC
13 NONE ASSIGNED X
12 NONE ASSIGNED X
11 NONE ASSIGNED X
10 NONE ASSIGNED X
oF SIROF BC
PE SIRQE B8
@D SIROD B4
ocC SIRGC BO
2B SIR@B AC
BA SIROA A8
89 SIRO9 A4
08 SIROG8 AQ
07 SIRG7 9C
26 SIRO6 98
@5 SIRBS 94
24 . SIRG4 99
83 SIRG3 . 8C
02 SIR@G2 OR AST DEL 88
21 SIROl 84 LOWEST
00 NO INTERRUPT X X
Exception vectors are generated by microservice routines (refer to

Paragraph 2.7.2).

Table 2-29 lists the vectors assigned to each
class of exceptions.

2-155




31 0

sces ]
31 30 29 9 8 0 L T
[oTo [pHYsicAL ADDRESS OF scs | ZEROS e
1 0
| vectoro08:02 | 0|0 Je—HARDWARE GENERATED
+ VECTOR BITS
31 0
| PHYSICAL ADDRESS (PA) ]
| MEMORY |1 MEMORY |
| ADDRESSES | | CONTENTS |
[ A
L of |a = SYSTEM CONTROL
- -
! (I |
| |1 l
31 v 0
VA

VIRTUAL ADDRESS OF
SERVICE ROUTINE

TK-081

Figure 2-76 Interrupt Vector Formation
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2.7.1.3 Hardware Generated Interrupt Vector -- Bits 08:82 of the
vector are generated by the interrupt control 1logic. Vector
generation for internal interrupts is straightforward since there
is only one vector assigned to each internal interrupt and
corresponding interrupt priority level (IPL). However, multiple
external interrupts can occur on each of interrupt priority levels
17:14. These priority levels correspond the SBI request 1levels
07:04. Several nexus (e.g., Unibus adapter, Massbus adapter) can
simultaneously request service at the same SBI level. Therefore,
the IPL at which an external interrupt occurs will not in itself
identify the nexus that caused the interrupt. A number of vectors
are assigned to interrupts occuring at each of the interrupt
priority levels 17:14.

The following paragraphs describe how vector bits @8:00 are
generated for both internal interrupts and external SBI
interrupts.

Internal interrupts -- The hardware generates vector bits ©28:02 as
a function of the interrupt priority active level and the status
of the console receive and transmit lines. Refer to Figure 2-77.
- IPL ACT bits 04:00 and the console lines are input to a VECTOR
PROM and combinational 1logic. The VECTOR PROM generates vector
lines 08:02. The combinational 1logic is wused to generate the
external interrupt request line when the IPL is 17:14. However,
the console receive and transmit interrupts are also requested on
IPL 14. Therefore, when the IPL ACT is 14 and the console
interrupt lines are asserted without an external SBI REQ 4, the
generation of EXT INT REQ is inhibited. The EXT INTR REQ line will
be disabled for all internal interrupts and the value of vector
bits ©8:02 will correspond directly to the output of the VECTOR
PROM.
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>

BUS 1D 08:02

ID BUS
XCEIlV

IDM 08:02

ID DATA
MUX

s
I [ I 3N J I
VECTOR 8:2
IPL ACT 4.0 VECTOR 8:6
CREC INTR VECTOR
CXMT INTR PROM VECTOR BIT 5:2 VECTOR 5:2
] EXT INTR REQ
comMs
LOGIC PRIOR 3:0

TK-0811

Figure 2-77 Generation of Interrupt Vector Bits @8:082
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External interrupts -- external interrupts occurring on SBI
request levels @7:04 are serviced on interrupt priority 1levels
17:14 respectively. The nexus (UBA, MBA, etc.) on the SBI can
interrupt the processor on each of the four request levels. Unlike
internal interrupts, the IPL activated will not specifically
identify the event which causes the external interrupt. In order
to identify the interrupting nexus, the processor must issue an
interrupt summary read on the SBI. Refer to Figure 2-78.

INTERRUPT B2 0807 0403 00
SUMMARY e ZERO — 35533_557 e ZERO >
READ
INTERRUPT B 1716 15 0100
SUMMARY 0 5
RESPONSE I T3
| !
BIT PAIRS
TK-0164

Figure 2-78 Interrupt Summary Read and Résponse Formats

The processor will specify the request 1level at which it is
polling interrupts. Nexus receiving the interrupt summary read
command, and asserting the request line specified in the interrupt
level mask (B@7:04), will generate an interrupt summary response
by asserting a bit pair in the information field (B31:20). The
bits are asserted in corresponding positions in the upper and
lower half of the information field (refer to Figure 2-78). Bit
pairs are asserted to maintain correct parity. The two bits
asserted by the requesting nexus are equal to the nexus TR number
and the nexus TR number plus 16. A transfer request (TR) number is
assigned to each nexus to establish the fixed priority access.
Assertion of a given TR 1line in the interrupt summary response
will identify the nexus which is interrupting at the specific
request level. :

The upper half of the information field (B31:16) is transferred to

the interrupt 1logic via the Internal Data (ID) bus. Refer to
Figure 2-79. '
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LOAD VECTOR REG

ID TO VECT /)

8 ZERO £
A PRIOR VALID

VECTOR
A ZERO REG
SEL BITS
1D 31:24 | PR/SUMI A pRIOR 2:0 PRIOR 25:21 |PRIOR3:0
PROM MUX
A A SUM 3:0
(72]
2
@
o B ZERO _
VECTOR
10 23:16_| PR/SUM] g pRioR 2:0 A REG  |NUMB ONES 4.0
FROM PLUS | BiITS
8 SUM 3:0 8 20:16

< 7 TK-0812

Figure 2-79 Vector Register Bits 25:16

The ID bus data (ID 31:16) is input to priority/sum PROMs which
encode the information for use in the vector register. The A or B
priority bits specify the nexus with the lowest TR number (highest
priority) which interrupted at the given request level. The output
from PROM A is selected by the prior mux if ID 23:16 is all zeros.

The PRIOR VALID bit in the vector register, when set, indicates
that ID 31:16 was not all zeros and that at least one nexus
interrupted at the given request level. The sum bits of PROMs A
and B are added to form the number of one bits in the ID 31:16
field and are not used in the interrupt process. Figure 2-80
illustrates the format of the entire vector register. The vector
register is a read-only register addressable on the internal data
bus (ID bus address = @D, hex).
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31 26 25 24 23 22 21 2019 18 17 16 15 09 08 02 01 00

ZEROS ZEROS ojo
? 3 3 4 4 4 4 & - ’
PRIOR VALID NUMB ONES 0 | VECTOR 08:02
PRIOR 3 NUMB ONES 1
T __PRIOR2 NUMB ONES 2
PRIOR 1 NUMB ONES 3
PRIOR 0 NUMB ONES 4

TK-0814

Figure 2-880 Vector Register Format

Vector register bits 24:21 (PRIOR @3:80) are used by hardware to
generate VECTOR lines @5:02. Refer to Figure '2-77. If the
interrupt is decoded as an external request, PRIOR £3:08 are ORed
with VECTOR PROM output bits 05:02 to form VECTOR 05:02. These
lines, in conjunction with VECTOR 08:06, are used to point to a
service routine unique to the interrupting nexus. The nexus
service routine will then initiate a read transfer on the SBI to
further identify the particular kind of interrupt requested by the
nexus (e.g., Unibus device interrupt). The information read is
used to point to a subroutine which can service that particular
interrupt.

If multiple nexus request interrupts on the same level, multiple
interrupt summary read commands are issued by the processor until
all nexus have been serviced. '

2.7.1.4 Hardware Interrupt Conditions -- The following paragraphs
provide a description of each of the hardware conditions (Figure
2-81) which cause interrupts on interrupt priority levels 1lE:14.

HIR IF_IE 1D IC 1B IA 1918 17 16 15 14 13 12 11 10
Lol y T 11111111 foJofofo]
[ s 4 4 | b 4 )

‘ .

SYNC CREC INTR -

SYNC PFAIL INTR _@ SYNC CXMT INTR
TIMO CNF INTR ' SBI REQ 4

FAULT INTR SBI REQ §
S81 ALERT R SB! REQ 6
CRD RDS INTR SBI REQ 7

COMP INTR INTERVAL INTR

TK-0818

Figure 2-81 Hardware Interrhpt Register (HIR)
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" SYNC PFAIL INTR (lE) -- The CPU power fail interrupt occurs if the
processor receives a power fail warning (power supply AC LO) or if
a critical system element receives a power fail warning (SBI FAIL,
QBUS AC LO). Critical system elements are those which must be
functioning before the power up routine is initiated by the
processor. Critical elements include the 11/03 microprocessor,
bootstrap or main memories, SBI terminators, clock circuitry, or
CPU.

TIMO CNF INTR (ID) -- The CPU write timeout interrupt occurs if
the processor initiates a write command and the destination does
not respond with a confirmation within 512 SBI cycles. Note that
write timeout interrupts do not necessarily occur during the
instruction which initiated the write command. Write commands are
stored in a buffer and the processor is allowed to continue while
an SBI write cycle is pending.

FAULT INTR (1C) -- The SBI fault interrupt occurs if an SBI bus
error was detected by any device on the bus including the
processor. If the processor detects a fault condition which
prevents the completion of a read cycle, an exception condition is
also generated.

NOTE
This interrupt can occur only if the
Fault Interrupt Enable bit is set in the
SBI Fault/Status register.

SBI ALERT (1B) -- This interrupt occurs when a device which does
not contain SBI interrupt request sequencing 1logic wishes to
interrupt the processor. Events causing this interrupt may be
device power failure or power up, or when environmental conditions
such as overtemperature are detected. The SBI alert 1line is
generated by the 1logic OR of alert status bits in the devices
configuration register.

CRD/RDS INTR (lA) =-- The corrected read data (CRD) interrupt is
asserted if the processor received read data which has been
corrected by main memory. The read data substitute (RDS) interrupt
is asserted if the processor received uncorrected read data on a
read cycle to the instruction buffer. These interrupts can occur
only if the RDS/CRD interrupt enable bit is set in the SBI error
register.

COMP INTR (19) -- The SBI silo compare interrupt occurs when
particular fields of the SBI bus match signals specified in the
SBI comparator register. This interrupt can occur only if the silo
lock interrupt enable bit is set in the SBI comparator register.
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INTERVAL INTR (18) -- This interrupt occurs when the interval
count register overflows and can only be initiated if enabled in
the clock control status register.

SBI REQ ©7:84 (17:14) =-- External interrupts occurring on SBI
request levels ©7:04 are servived on interrupt priority levels
17:14. These interrupts result from device completion, device
errors, and important device status changes.

SYNC CREC INTR/SYNC CXMT INTR (14) -- The console terminal receive
interrupt occurs when the Done bit is set in the console's
receiver control/status register (RXCS). The receive interrupt
enable bit in the RXCS register must be set for the interrupt to
occur.

The console terminal transmit interrupt occurs when the Ready bit
is set in the console's transmit control/status register (TXCS).
This interrupt cannot occur unless the transmit interrupt enable
bit in the TXCS register is set. The receiver interrupt has higher
priority than the transmit interrupt.

2.7.1.5 Software Generated Interrupts -- Interrupt priority
levels OF through @1 are reserved exclusively for software.
Software can force an interrupt by executing the instruction MTPR
SRC, #SIRR. This move to processor register instruction will move
the contents of the source register to the software interrupt
request register (SIRR). The SIRR is accessible in processor
register space and its register number is 14 (hex). It is a
write-only, four bit register formatted as shown in Figure 2-82.

31 . 04 03 00
IGNORED REQUEST
TK-0816

Figure 2-82 Software Interrupt Request Register (SIRR)

Executing MTPR SRC, #SIRR requests an interrupt at the 1level
specified by the low four bits of the source register (SRC £3:00).
Once a software interrupt request is made, it will be cleared by
the hardware when the interrupt is taken. If SRC 03:00 is greater
than the current IPL, the interrupt occurs before execution of the
following instruction. If SRC @3:080 is less than or equal to the
current IPL, the interrupt will be deferred until the IPL |is
lowered to less than SRC 03:00. If there are higher 1level
interrupts pending, the higher interrupts will be taken first.
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Pending software interrupts are held in the software interrupt
summary register (SISR). The SISR is a read/write processor
register (number 15, hex) which is formatted as shown in Figure
2-83. The SISR contains 1l's in the bit positions corresponding to
levels on which software interrupts are pending.

31 16 15 01 00
| IGNORED PENDING SOFTWARE INTERRUPTS OF:01 |0 |
TK-0817

Figure 2-83 Software Interrupt Summary Register (SISR)

When a software request is made by writing into the software
interrupt request register (SIRR), the microcode will interpret
this write as a bit set operation to the SISR. The mask generator
in the data paths is used to decode the request level in the SIRR
into a single bit designation in the SISR. The software interrupt
sSummary register can be written directly be executing the
instruction MTPR SRC, #SISR. However, this is not the normal way
of making software interrupt requests. This method is useful for
clearing the software interrupt system and for reloading the
system after power fail. ' '

Bit 02 of the SISR is also set if an asynchronous system trap
(AST) is delivered at interrupt priority level 2 (IPL 02). During
the execution of the REI (return from exception or interrupt)
instruction, the microcode compares the value in the current mode
field of the PSL image (bits 25:24) with the asynchronous system
trap level (ASTLVL) in the ASTR register. If the current mode is a
greater value (lesser priority) than the 3-bit ASTLVL, an
asynchronous system trap (AST) is delivered at interrupt priority
level 2. The microcode will set bit @2 in the SISR before
completing the execution of REI. The asynchronous system trap
level register (ASTR) is a 3-bit, read/write processor register
(number 13, hex) which is formatted as shown in Figure 2-84.

31 03 02 00
IGNORED ASTVL

TK-0818

Figure 2-84 Asynchrondus System Trap Level Register (ASTR)

Software Interrupt Register (SIR) -- The software interrupt
register is an internal data bus register (ID bus address = @E,
hex) located on the Interrupt Control board. Refer to Figure 2-8S5.

31 21 20 16 15 01 00
ZEROS IPL ACT 4:0 SOFTWARE INTERRUPT LEVELS OF :01 | 0

TK-0819

Figure 2-85 Software Interrupt Register
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Bits 15:81 of the SIR are read/write. They are in the same format
as bits 15:01 of the software interrupt summary register (SISR) in
processor register space. When an MTPR instruction is executed and
the processor register specified is the SISR or SIRR, the software
interrupt register is clocked with data from the ID bus (ID
15:61). The ID bus data specifies which software interrupt
requests are being made. Bits 28:14 (IPL ACT #4:80) indicate the
level of the highest priority interrupt pending.

2.7.2 Exceptions

Exceptions are the notification of events which are relevant
primarily to the currently executing process and normally invoke
software in the context of the current process. Exceptions occur
in the middle or at the end of the instruction during which the
exception conditions were detected. The PSL and PC of the
instruction, or the PC of the next instruction, are pushed onto
the kernel or interrupt stack. Also, -up to 16 ‘longwords of
exception parameter information may be pushed onto the stack. The
processor's IPL is generally not changed by exceptions. However,
two exception conditions, Kernel Stack Not Valid and Machine Check
Faults, do raise the IPL to the highest priority level (1F, hex).

Exceptions are classified into one of the following three
categories, depending on when the exception condition occurs and
how they leave the general registers and memory:

a. Trap An exception condition that occurs at the end of the
instruction that caused the exception. The PC saved on
the stack is the address of the next instruction that
would normally have been executed. Arithmetic traps
are the only exceptions which can be disabled (via
BISPSW and BICPSW instructions).

b. Fault An exception condition that occurs in the middle of an
instruction, and leaves the registers and memory in
the state such that elimination of the fault conditons
and restarting the instruction will give the correct
results. The PC saved on the stack is the address of
the instruction in which the fault was detected.

c. Abort An exception condition that occurs in the middle of an
instruction and potentially leaves the registers and
memory such that the instruction cannot be correctly
restarted or completed. The PC saved on the stack does
not necessarily point to the beginning of the next
instruction.
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Exception conditions detected by the hardware modify microprogram
flow by one of the following two methods:

a. Microbranches -- Some exception conditions can modify the
next microaddress via the branch multiplexers in the
microsequencer logic (refer to Paragraph 2.3.2.1). The
signal 1lines representing the exception conditions are
tested when the associated branch enable value is
specified in the UBEN field of the microword. If the
exception condition is present, the microaddress is
modified to reflect it. Microbranches can also be
performed via the A Fork service logic. The service bits
are input to the instruction decode 1logic. When the
subroutine field (USUB) of the current microword equals
3, the instruction decode logic generates the lower eight
bits of the microaddress. If certain exception conditions
are present, the service bits are selected by the
instruction decode logic to generate the microaddress.

b. Microtraps =-- Some exception conditions generate
microtrap vector bits which are input to the branch
multiplexers in the microsequencer 1logic (refer to
Paragraph 2.3.2.3). The microtrap condition will force a
particular branch enable to be selected (BEN 10). This
branch enable will select the vector bits (UTRAP VECT
03:00) as the source for the 1low four bits of the
microaddress. The upper bits of the microaddress are
hardwired to form the rest of the vector. The exception
conditions detected during microinstructions force the
microcode flow to service routines pointed to by the
vector. The microprogram counter is pushed onto the
microstack so that the program can continue after the
error is serviced.

2.7.2.1 Exception Vectors -- The microservice routines are
pointed to by the microbranch address or microtrap vector. Each
microservice routine will generate the correct exception vector
and related exception codes using a set of constants specified in
the UKMX field of the microword. The service routine will also use
the information stored in the processor registers to assemble the
necessary parameters to be saved on the stack. Table 2-29 lists
each exception, class, vector assignment and method by which the
exception conditions are detected.

2-166




Table 2-29 Exception Conditions and Assigned Vectors

Detection
Exception Condition Vector | Class Function
Machine Check 84 fault\abort ubranch/utrap
Kernel Stack Not Valid 28 abort ubranch
Reserved DEC Op Codes and
Privileged Instructions 10 fault ubranch
Reserved Customer Op Codes 14 fault ubranch
Reserved Operands 18 fault/abort ubranch/utrap
Reserved Addressing Modes .1C fault ubranch
Access Control Violation 28 fault utrap/ubranch
Translation Not Valid 24 fault ubranch
Trace Pending (TP) 28 fault ubranch
Breakpoint Instruction (BPT) 2C ,fault ubranch
Compatibility Mode. |
Program Error 30 trap/abort ubranch
Arithmetic Trap 34 trap ' ubranch
CHMK OP CODE ’ 40 trap ubranch
CHME OP CODE 44 trap | ubranch
CHMS OP CODE 48 trap ubranch
CHMU OP CODE 4C trap ubranch
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2.7.2.2 Serious System Failures -- The following paragraphs
provide a brief description of exceptions which are of such
importance that the interrupt priority level is raised to 1lF (hex)
or the machine is halted.

2.7.2.2.1 Kernel Stack Not Valid Abort -- The kernel stack not
valid abort is an exception that indicates the kernel stack was
not valid while the processor was pushing information onto the
kernel stack during the initiation of an exception or interrupt.
This 1is usually an indication of a stack overflow or other
executive software error. The attempted exception is changed into
an abort that uses the interrupt stack. The interrupt priority
level (IPL) is raised to 1lF (hex). No additional parameters are
pushed onto the interrupt stack. .

2.7.2.2.2 1Interrupt Stack Not Valid Halt -- An interrupt stack
not valid halt is an exception that indicates that the interrupt
stack was not valid or that a memory error occurred while the
processor was pushing information onto the interrupt stack during
the initiation of an exception or interrupt. No further interrupt
requests are acknowledged on this processor.

2.7.2.2.3 Machine Check Exception -- A machine check exception
indicates that an internal processor error was detected. The
interrupt priority level is raised to 1F (hex). In addition to the
the PC and PSL, parameters are pushed onto the stack as longwords.
These parameters will depend on the type of machine check
encountered. The last longword pushed will specify the number of
additional bytes pushed, excluding the PC, PSL, and count
longword. The information pushed will enable software to decide
whether or not to abort the current process, and is 1logged for
analysis by field service.

At any machine check, the error handling microcode attempts to
logout the following information. Ordinarily, it appears on the
stack as shown. However, if a double error halt occurs, the
operator can find the same information in the ID bus temporary
registers.

Data Memory Location ID Bus Location
Byte Count (SP) none
Summary Parameter (SP)+4 TB(30)
CPU Error Status (SP)+8 T1(31)
Trapped UPC (SP)+12 T2(32)
VA/VIBA (SP)+16 T3 (33)
D Register (SP)+20 T4 (34)
TB ERR 0 (SP)+24 TS5 (35)
TB ERR 1 (SP)+28 T6(36)
Timeout Address (SP)+32 T7(37)
Parity (SP)+36 T8 (38)
SBI Error (SP) +40 T9 (39)
PC (SP)+44 none
PSL (SP) +48 none
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The summary parameter is a longword. Byte 1 of the longword is a
flag. It is non-zero if a CP timeout or CP error confirmation
interrupt was pending at the time the machine check occurred.
Byte @ identifies the type of machine check as follows:

Machine Check Code Exception Condition

00 CP Read Timeout or Error Confirmation Fault
02 CP Translation Buffer Parity Error Fault

83 CP Cache Parity Error Fault

85 CP Read Data Substitute Fault

oA ) IB Translation Buffer Parity Error Fault

ec IB Read Data Substitute Fault

@D IB Read Timeout or Error Confirmation Fault
oF IB Cache Parity Error Fault

Fl . Control Store Parity Error Abort

F2 CP Translation Buffer Parity Error Abort

F3 CP Cache Parity Error Abort

F4 CP Read Timeout or Error Confirmation Abort
FS CP Read Data Substitute Abort

F6 Microcode "not supposed to get here" abort

The control store parity error is detected by a utrap. The
remaining exception conditions are detected by ubranches during
instruction buffer cycles and utraps for data path cycles.

2.7.2.3 Exceptions Detected During Operand Reference

2.7.2.3.1 Access Control Violation -- An access control violation
fault is an exception that occurs when the process attempts a
reference not allowed at the access mode in which the process was
operating (protection violation). An access control violation
fault is also taken if the virtual address referenced is beyond
the end of the associated page table (length violation). The
protection violation is detected by a utrap for data path cycles
and a ubranch for instruction buffer cycles if the entry was in
the TB. Otherwise, it is detected by a ubranch. The 1length
violation is detected by the branch function.

2.7.2.3.2 Translation Not Valid -- A translation not valid fault
is taken when a read or write reference is attempted through an
invalid page table entry (PTE 31 = 8). This fault is detected by a
ubranch.

2.7.2.3.3 Reserved Addressing Mode -- A reserved addressing mode
fault is an exception which occurs when certain addressing modes
are used in a prohibited situation. No additional parameters are
pushed. The following 1lists the situations in which the use of
certain addressing modes will cause a fault.
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Addressing Mode Situation

Short Literal Modify, destination, address source, or within
index mode.
Register Address source or within index mode.
 Index Within index mode, or with PC as index.

2.7.2.3.4 Reserved Operand -- A reserved operand exception
indicates that the operand accessed has a format reserved for
future use by Digital. No additional parameters are pushed. The PC
is always backed up to point to the op code. The service routine
determines the type of operand by examining the op code using the
stored PC. Only changes made as a result of the instruction fetch
or operand specifier evaluation can be restored. Therefore, some
instructions are not restartable and the associated exception is
an abort rather than a fault. The PC is always properly restored
unless the instruction attempted to modify it in a manner that
yields unpredictable results. The PSL, other than the FPD and TP
bits, is not changed except for the condition codes which are
unpredictable.

The following 1lists the events which cause reserved operand
exceptions and whether the event results in a fault or an abort:

a. A floating-point number that has the sign bit set and the
exponent zero except in the POLY table (FAULT)

b. A floating-point number that has the sign bit set and the
exponent zero in the POLY table (ABORT)

c. POLY degree too large (FAULT)

d. Decimal string too long (FAULT)

e. Invalid digit in CVTTP, CVTSP (FAULT)
£. Bit field too wide (FAULT)

g. Invalid combination of bits in PSL restored by REI:
(FAULT)

“h. Reserved pattern operator in EDITPC (ABORT)

i. Incorrect source string length at completion of EDITPC
(ABORT)

je Invalid combination of bits in PSW/MASK longword during
RET (FAULT) v

ke Invalid combination of bits in BISPSW/BICPSW (FAULT)
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1. Invalid CALLx entry mask (FAULT)

m. Invalid register number in MFPR or MTPR (FAULT)

n. Invalid combinations in PCB loaded by LDPCTX (ABORT)
o. Unaligned operand in ADAWI, INSQU, or REMQUE (FAULT)
P. Invalid register contents in some MTPR's'(FAULT)

2.7.2.4 Exceptions Occurring as the Consequence of an
Instruction

2.7.2.4.1 Op Code Reserved to Digital -- An op code reserved to
Digital fault occurs when the processor encounters an op code that
is not specifically defined or requires higher privileges than the
current mode. No additional parameters are pushed. Op code FFFF
(hex) will always fault.

2.7.2.4.2 Op Code Reserved to Customers and CSS -- This fault
occurs if an op code reserved to customers or Digital's Computer
Special Systems (CSS) group (xxFC) is executed. The operation is
identical to the op code reserved to Digital fault except that the
event is caused by a different set of op codes and faults through
a different vector.

2.7.2.4.3 Compatibility Mode Exception -- This exception occurs
when a reserved op code or an illegal instruction is encountered
when executing instructions in compatibility mode.  Also, a
compatibility mode abort may occur if an odd address error is
detected during the following memory references: '

a. Any reference with VA@G® = 0 and not a byte instruction.

b. An add;ess fetch in the evaluation of addressing mode 3,
5, or 7.

c. An index word fetch in the evaluation of addressing modes
6 and 7.

d. Instruction fetch
An additional longword of information (trap code) is pushed onto
the stack which indicates the event which caused the exception.
The following 1lists the condition, trap code, and class of
exception.

Exception Condition Trap Code Class

reserved op code ') fault
BPT op code 1 fault
IOT op code 2 fault
EMT op code 3 fault
TRAP op code 4 fault
illegal instruction S fault
odd address error 6 abort
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The special op codes and illegal instructions are detected by
ubranches and the odd address error is detected by a utrap.

2.7.2.4.4 Breakpoint Fault -- A breakpoint fault is an exception
that occurs when the breakpoint instruction (BPT) is executed. No
parameters are pushed.

To proceed from a breakpoint, a debuffer or tracing program
typically restores the original contents of the 1location
containing the BPT, sets T in the PSL saved by the BPT fault, and
resumes. When the breakpointed instruction is completed, a trace
trap will occur. At this point, the tracing program can again
re-insert the BPT instruction, restore T to its original state,
and resume. '

2.7.2.5 Tracing -- A trace trap is an exception that occurs
between instructions when trace is enabled. Tracing is used for
tracing programs, for performance evaluation, or debugging
purposes. It is designed so that one and only one trace trap
occurs before the execution of the subsequent instruction (except
that a service routine invoked by CHMx and terminated by REI is
considered a single instruction). The saved PC on a trace is the
address of the next insturction that would normally be executed.

In order to ensure that exactly one trace occurs per instruction
despite other traps and faults, the PSL contains two bits, trace
enable (T) and trace pending (TP). If only one bit were used then
the occurrence of an interrupt at end of instruction would either
produce zero or two traces, depending on the design. Instead, the
PSL T bit is defined to produce a trap after any other traps or
aborts. THhe trap effect is implemented by copying PSL T to a
second bit (PSL TP) which is actually used to generate the
exception. PSL TP generates a fault before any other processing at
the start of the next instruction.

The rules of operation for trace are:

1. At the beginning of an instruction, if T is set then TP
is set.

2. If the instruction faults or an interrupt is serviced,-
the pushed PSL TP is cleared. The pushed PC is set to
the start of the faulting or interrupt instruction.

3. If the instruction aborts or takes an arithmetic trap,
the pushed PSL TP is set or cleared as the result of step
1,

4. If an interrupt is serviced after instruction completion
and arithmetic traps but before tracing is checked for at
the start of the next instruction, then the pushed PSL TP
is set or cleared as the result of step 1l.
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5. At the beginning of an instruction, if TP is set then a
trace pending fault is taken.

There are two special cases. They are the CHMx and the REI
instructions. These are special since they may change TP,
something that no other instructions do. However, these also
follow the rules given above.

The routine entered by a CHMx is not traced because CHMx clears T
and TP in the new PSL. However, if T was set at the beginning of
CHMx the saved PSL will have both T and TP set. REI will trap
either if T was set when the REI was executed or if TP in the
saved PSL is set. Because of this, the instruction sequence
CHMx...REI acts as a single instruction. Note that the trace trap
occurring after an REI that has TP set before being executed will
be taken with the new PSL. Thus, special care must be taken if
exception or interrupt routines are traced.

In addition, the CALLx instructions save a clear T, although T in
the PSL is unchanged. This is done so that a debugger or trace
program proceeding from a BPT fault does not get a spurious trace
from the RET that matches the CALL.

The detection of interrupts and other exceptions occurs before the
"detection of a trace trap. However, this causes no difficulties
since the entire PSL (including T and TP) is automatically saved
on interrupt or exception initiation and is restored at the end
with an REI. This makes interrupts and benign exceptions totally
transparent to the executing program.

2.7.2.6 Change Mode Instruction Trap -- When execution of each of -
the change mode instructions (CHMK, CHME, CHMS, CHMU) is complete,
a trap is performed. Additional parameters pushed include the sign
extended operand contained in the D register. This exception
condition is detected by a microbranch.

2-173




2.7.2.7 Arithmetic Traps -- Arithmetic traps occur as the result
of performing arithmetic or conversion operations. The traps are
mutually exclusive and all are assigned the same vector, 34 (hex).
The arithmetic traps indicate that an exception had occurred
during the last instruction and that the instruction has been
completed. The exception conditions are detected by ubranches. The
PC pushed on the stack is that of the next instruction to be
executed. In addition to the PSL and PC, a longword is pushed onto
the stack which identifies the exception condition. The followin

lists the trap code pushed on the stack and the associate

condition.

Exception Condition Trap Code

integer overflow

integer divide by zero

floating overflow
floating/decimal divide by zero
floating underflow

decimal overflow

subscript range

NSO WN -

The following paragraphs provide a brief description of each
‘arithmetic trap condition.
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2.7.2.7.1 1Integer Overflow Trap -- An integer overflow trap is an
exception that indicates the last instruction executed had an
integer overflow setting the V condition code and indicates that
integer overflow was enabled (IV set). The result stored is the
low-order part of the correct result. N and Z are set according to
the stored result. The type code pushed on the stack is 1. Note
that the instructions RET, REI, REMQUE, MOVTUC, and BISPSW do not
cause overflow even if they set V. Also note that the EMODx,
CVTFx, and CVTDx floating-point instructions can cause integer
overflow.

2.7.2.7.2 Integer Divide By Zero Trap =- An integer divide by
zero trap is an exception that indicates the last instruction
executed had an integer zero divisor. The result stored is equal
to the dividend and condition code V is set. The type code pushed
on the stack is 2.

2.7.2.7.3 Floating Overflow Trap -- A floating overflow trap is
an exception that indicates the last instruction executed resulted
in an exponent greater than 127 (unbiased) after normalization and
rounding. The result stored contains a one in the sign and zeros
in the exponent and fraction fields. This is a reserved operand
and will cause a reserved operand fault if used in a subsequent
floating-point instruction. The N and V condition code bits are
set and Z and C are cleared. The type code pushed on the stack is
3.

2.7.2.7.4 Floating/Decimal Divide By Zero Trap -- A floating
divide by =zero trap is an exception that indicates the 1last
instruction executed had a floating zero divisor. The result
stored is the reserved operand (as described above for floating
overflow trap) and the condition codes are set as in floating
overflow. :

A decimal string divide by zero trap 1is an exception that
indicates the last .instruction executed had a decimal string zero
divisor. The destination and condition codes are UNPREDICTABLE.
The zero divisor can be either +08 or -0.

The type code pushed on the stack for both types of divide by zero
is 4.

2.7.2.7.5 Floating Underflow Trap -- The floating underflow trap
is an exception that indicates the last instruction executed
resulted in an exponent 1less than =127 (unbiased) after
normalization and rounding and that floating underflow was enabled
(FU set). The result stored is zero. Except for POLYx, the N, V,
and C condition codes are cleared and Z is set. In POLYx, the trap
occurs on completion of the instruction, which may be many
operations after the underflow. The condition codes are set on the
final result in POLYx. The type code pushed on the stack is 5.
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2.7.2.7.6 Decimal String Overflow Trap -- The decimal string
overflow trap is an exception that indicates the last instruction
executed had a decimal string result too large for the destination
string provided and that decimal overflow was enabled (DV set).
The V condition code is always set. The type code pushed on the
stack is 6.

2.7.2.7.7 Subscript Range Trap -- A subscript range trap is an
exception that indicates the last instruction was an INDEX
instruction with a subscript operation that failed the range
check. The value of the subscript operand is lower than the low
operand or greater than the high operand. The result is stored in
indexout, and the condition codes are set as if the subscript was
within range. The type code pushed on the stack is 7.

2.7.2.8 Microtraps -- Detection of certain unusual conditions
by the hardware will cause the microprogram to trap to a service
flow. Initiation of the trap will cause the micro PC to be pushed
on the microstack so that the microprogram can be continued after
the condition is serviced. Multiple utrap conditions can occur at
the same time. Therefore, the conditions are input to priority
encoders. Refer to Figure 2-86. If any conditions are present, the
UTRAP signal will be generated. This signal will force selection
of BEN 10 by the branch logic. This branch enable (BEN 10) will
select the utrap vector (UTRAP VECT 03:00) to form the low four
bits of the next microaddress. Refer to section 2.3.2.3. ¥The
remaining address bits are hardwired to form the entire microtrap
vector. This vector will point to the microcode service routine
which can handle the condition.

11
CS PE TRAP 4
CMODDADRS TRAP
TIMEOUT TRAP ‘:;:)AR':TY
ROS TRAP ENCODER —DU_T%P_. ENABLES BEN 10

3,

rd
T8 PAR UTRAP +3
FLOAT OP TRAP ; 3 L—--‘
MISS UTRAP 7 7

AP UTRAP TRAP VECT 3:0
PROT UTR PRIORITY taTcH 12 TO
M BIT UTRAP ENCODER 3 BRANCH
PAGE TRAP 7 MUX
UNALIGN TRAP
\ CLR
p 4 3
PAR ERR TRAP ,
SYS INIT_|
Figure 2-86 Microtrap Logic Tx-0810
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The microtrap conditions and associated vectors are listed below

in their relative priority.

Condition Vector

Highest System Init X100
CS Parity Error X10F
0dd Address Error X10E
Read Timeout X10D
Read Data Substitute X1lec
Cache Parity Error X108
Translation Buffer Parity Error X107
Reserved Floating Operand X106
Translation Buffer Miss X105
Protection Violation X104
Modify Bit (M bit) X103

. Page Trap X102

Lowest Unaligned Data X101
If X = @, the vector is in PCS

If X =1,

the vector is in WDCS

The following paragraphs provide a brief description of each of
the microtrap error conditions:

SYSTEM INIT

CS PARITY ERROR

ODD ADDRESS

READ TIMEOUT

The microtrap occurs as the result
of DC LO being asserted in the
processor or if DEAD is received
from the SBI. :

This microtrap occurs when the
microsequencer detects a parity
error in the next microinstruction.
This may cause a machine check abort
at any time.

An 0dd Address microtrap occurs when
a 16-bit reference is made to an odd
byte boundary in compatibility mode.
The microtrap service routine
performs an abort.

The Read Timeout microtrap occurs
under two circumstances: (a) the bus
control logic could not gain access
to the SBI or the addressed location
responded with BUSY for 512 cycles
or (b) the bus control 1logic
received a NO-RESPONSE confirmation
indicating a non-existent address
for 512 cycles.
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READ DATA SUBSTITUTE

CACHE PARITY ERROR

TB PARITY ERROR

RESERVED FLOATING OPERAND

TB MISS

PROTECTION VIOLATION

"M BIT

A Read Data Substitue microtrap
occurs when the processor performs a
read or interlock read on the SBI
and memory has returned uncorrected
read data.

A Cache Parity Error microtrap
occurs when a parity error |is
detected in Cache. The output of
both groups of the address matrix
and data matrix is parity checked as
soon as a Cache reference is made.

A TB Parity Error microtrap occurs
when a parity error is detected in
the TB. The information from both
groups of the address matrix and
data matrix is parity checked as
soon as an address is sent to the TB
matrices.

A Reserved Floating Operand
microtrap occurs when the microword
UMSC field equals 2 (CHK FLOAT OP)
and ALU bit 15 equals 1 AND ALU bits
14:07 equal zeros.

A TB Miss microtrap occurs when a
requested page table entry is not
found in the TB. During the TB Miss
microtrap service routine in the PTE
is fetched from main memory and
placed in the TB.

A Protection Violation microtrap
occurs if- the current processor mode
and/or intended page access violates
the assigned protection for the page
as dictated by the protection code
of the PTE.

A M Bit microtrap occurs when a
write is attempted to a page whose
PTE contains an unasserted M bit.
During the microtrap service routine
the M bit of the PTE is set in the
TB and in memory. To accomplish
this, the PTE in memory is fetched,
modified, and rewritten.
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PAGE BOUNDARY A Page Boundary microtrap occurs
when a cycle which crosses a page
boundary is attempted. During the
Page Boundary microtrap service
routine, the intended access to the
new page is checked before the cycle
can be executed. This prevents the
possibility of writing the first
part of a data stream, after which
the writing of the second part is
prohibited (i.e., eliminates the
possibility of half updated data).

UNALIGNED DATA An Unaligned Data microtrap occurs
when a reference 1is across a
longword boundary. During the
microtrap service routine, the
microcode retrieves the portion of
the data which was not part of the
original longword.

2.7.3 Microword Control of Interrupts and Exception

Two fields of the microword, UIEK and UMSC, are used to control
interrupts and exceptions. The following paragraphs -provide a
brief description of each field.

2.7.3.1 Interrupt and Exception Control (UIEK) Field -- The
UIEK field (BUS CS 31:30) of the microword is used to monitor and
acknowledge interrupt conditions. The field value specifies the
following functions:

UIEK Field .
BUS CSs 31 BUS CS 30 Function

NO-OP

Interrupt Strobe (ISTR)
Interrupt Acknowledge (IACK)
"Exception Acknowledge (EACK)

- aQ
L )

The interrupt strobe (ISTR) function clocks the hardware interrupt
register (HIR), thereby sampling the interrupt lines on levels 1E
to 1l4. All interrupts that are detected at the time are
prioritized. The interrupt strobe is usually enabled at the end of
instructions prior to returning to the instruction decode state
(IRD). If the priority of the interrupt is higher than the current
IPL field in the PSL, an interrupt branch is performed at A fork
in the microcode flow. During the execution of 1long iterative
instructions, the ISTR function is used to periodically monitor
the interrupt conditions and to allow a subsequent branch to be
performed.
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The interrupt acknowledge (IACK) function is used to clear the
power fail, console terminal receive and console terminal
interrupts when they are being serviced by the microcode routine.

The exception acknowledge (EACK) function is used to clear pending
arithmetic traps after they have been serviced or when other
exceptions occur.

The IACK function and the EACK function set the processor status
longword to the following predetermined state:

PSL Bit Position ' Name IACK Function EACK Function
31 CMP " ")

30 TP ") 0

29: 28 2 "] 2

27 FPD ") ']

26 IS IS IS

25: 24 CUR MOD "} "]

23: 22 PREV MODE 0 CUR MODE
21 "} ] ' , 2

20:16 IPL IPL ACT IPL
15:08 0 0 0

87 DV ) 0

g6 ’ FU ") "}

g5 v "] (")

g4 T " 0

83 N ) 0

g2 -2 2 2

g1 v "] 2

00 C ") 0

2.7.3.2 Miscellaneous (UMSC) Pield -- The UMSC field (BUS CS
29:26) of the microword provides a variety of functions, some of
which affect the generation of exception conditions. The following
provides a brief description of each function specified by the
associated field value. :
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UMSC Field
(Hex value)

)
1

Function
NO-OP
CHK CHMX INSTR

CHK FLOAT OP

CHK ODD ADDRS

unused

LOAD STATE.

LOAD ACC COND.

READ RLOG

CODES

2.181

Description

Loads the CUR MOD bits into
the PRV MOD register. If the
new data specified by the
change mode instruction |is
greater than the CUR MOD in
the PSL, this function
prevents loading of the CUR
MOD bits.

Causes a utrap before
execution of the next
microinstruction if ALU bit
15 equals 1 AND ALU bits
14: 907 equal 4.

Causes a utrap before
execution of the next
microinstruction if in
compatibility mode AND VAQO
= 1 AND enabled by memory
cycle.

Loads contents of state
register into EAMX and
enableS 1load function on
state register.

Loads the PSL condition
codes from the ACC condition
codes, clocked on the
previous microinstruction.

‘Loads " the RLOG and PCSV

inputs into the BMX and
decrements the RLOG pointer
at the end of the
microinstruction.




IRD STATE

unused

'CLR NESTED ERROR

SET NESTED ERROR

SEC REF, INH TRAPS,_N

SAVED CTX

INH TRAPS,

SAVED CTX

INH COMPATIBILITY MODE

SAVED CTX
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Used to indicate that a new
macroinstruction has begun
to be evaluated. Causes the
RLOG pointer to be
initialized, TP to be loaded
from PSL T, and HP to be
loaded from the halt request
signal.

Clears the nested error flag
in the CPU Error/Status

register.

Sets the nested error flag
in the CPU Error/Status
register.

Used in conjunction with the
UMCT and UADS fields to
further specify a memor
reference; :

SEC REF -- used to generate
the second part of a byte or
load mask when referencing
unaligned data.

INH TRAPS -- prevents a page
and unalign utrap from
occurring. .
SAVED CTX -- specifies the
data type information saved
by a previously specified
UMCT code be used to
generate the byte and 1load
masks. Also used for the
detection of o0dd address,
page boundary, and unaligned
data utraps. '

Prevents the PSL CMP bit
from forcing VAMX 31:16 to
zeros. Also inhibits the odd
address utrap.




2.8 SYSTEM CLOCKS

The VAX-11/780 system contains three clocks: the processor clock,
the time of year clock, and the interval time clock. Each of
these clocks is described in the following paragraphs.

2.8.1 Processor Clock

The processor clock (Figure 2-87) provides the circuitry required
for the generation of SBI timing signals, decoding of SBI signals
and distribution to the processor modules, and power up/power fail
sequencing.

The synchronous operation of the VAX-11/788 is based on a clock
cycle of 200 ns. There are four 50 ns time states per cycle (TGO,
Tl, T2, and T3). The CPU and SBI time states are derived from SBI
signals called TP (timing pulse), PCLK (clock phase) and PDCLK
(clock phase delayed). Refer to Paragraph 2.8.1.3 for the
relationship between the SBI signals and the derived SBI and CPU
time states. ’

2.8.1.1 Frequency Selection =-- The clock frequency of the
processor can be selected from three internal oscillators and one
external oscillator. Frequency selection is dependent on the
value of two bits in the machine control register (MCR bits 64 and
03) located on the console interface board. These two bits (FR1
and FRO) are set by LSI software to control the clock frequency as
follows:

FR1 (bit 64) FRO (bit 83) Frequency

0 "] 10 Mhz (normal)

g 1 10.525 (5% short)
1 /] 8.925 (12% 1long)
1 1l External Source

2.8.1.2 Start/Stop/Step Control Logic -- The console generates
four signals which are used to control operation of the processor
clock. The control signal synchronizer latches and synchronously
clocks these signal 1lines prior to being 1input to the
start/stop/step control 1logic. The following 1lists the four
signals and their function:

Signal Name ‘Function

PROCEED L Proceed

STS L Single Time State

SBC L Single Bus Cycle .
SOMM L Stop on Microbreak Match
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The control logic uses the oscillator frequencies in conjunction
with the console signals to generate GATEDCLK H and GATEDCLK L.
These two major timing signals are then used by the sequence
generator to produce the SBI timing signals.

As previously mentioned, four bits of the machine control register
(MCR) are set or cleared by LSI-11 software to start, stop, or
step the processor clock. The following paragraphs briefly
describe each of these bits and their effect on clock operation.

MCR Bit 06, Stop on Microbreak Match (SOMM) -- In maintenance
mode, the console can stop the processor clock at a specific
microaddress by writing that address into the micro PC break
register (via the ID bus). If the SOMM bit is set by the LSI-1l1,
the clock will stop in CPT @ of the cycle in which the contents of
the micro PC break register matches the micro PC.

MCR Bit @2, Single Time State (STS) -- The STS bit, when set, will
stop the clock in any one of the four time states. If the STS bit
is set, the clock can be stepped one time state by writing a 1 to
the proceed bit. ,

MCR Bit @1, Single Bus Cycle (SBC) =-- If the LSI-ll sets the SBC
bit and the STS bit is @8, the clock will stop at CPT 0. Also, if
the SBC bit is set and the STS bit is @, the clock can be stepped
by one clock cycle (i.e., to the next CPT@) by writing a 1 to the
proceed bit. _ ~

MCR BIT 00, Proceed (PROCEED) =-- Writing a 1 into the proceed bit
will affect the clock in any one of three ways depending on the
states of the STS and SBC bits, shown as follows. Note that
writing a 1 to the proceed bit while the clock is running will
have no effect.

PROCEED STS SBC Effect on Clock
2 2 start clock running
2 1 step clock one cycle
1 2 step clock one time state
1l 1 step clock one time state

2.8.1.3 Processor Clock Timing Diagrams -- The following figqures
illustrate the SBI timing (Figure 2-88), CPU timing (Figure 2-89),
SBI Clock Power Up Sequencer Timing (Figure 2-98), and CPU Power
Fail Sequencer Timing (Figure 2-91). '
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2.8.2 Time of Year Clock ,

The time of year clock is used by software to perform various
timekeeping functions. Its primary purpose is to provide the
correct time to the system after power failures. This feature
eliminates the need for an operator to enter the time at system
restart.

The time of year clock (Figure 2-92) is physically located on the
instruction decode board (M8224) and is accessible to software via
the MTPR and MFPR instructions. The time of year register is a
binary up counter that counts at a 100 Hz rate. This count
frequency for the register gives a range of 497.1 days.

& 32

1 MS CLK

o1 CLK
TIME OF YEAR

COUNTER/

1OMSEN _IcNT  REGISTER

[

4 CLK

c‘:%ou'?frsa HOLDING | LOAD DAY CLK
+5—8{CNT REGISTER

1 KHz
0sc

1D SEL

DATA MUX

1 4
DAYW B ID 31:00

ID BUS
XCEIV

IBUS ID 31:00

< — D

TK-0484

Figure 2-92 Time of Year Clock
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The 32 bit time of year register can be read or written via the
Internal Data (ID) bus. The data is actually read from or written
to a holding register. In a write operation, the incoming data
from the ID bus is latched into the holding register. The data is
loaded into the time of year register after the 1 kHz clock has
synchronized to the ID write of the holding register.

In a read operation, a special microprogram flow is required
because of the very slow switching speed of CMOS. In order to
solve the problem of synchronizing the 100 Hz counter to the CPU,
the microprogram will read the time of register twice and compare
the two values. If they are the same, the value is sent to the
macro software. If they are different, the microprogram will
continue testing until the values are the same.

The software will convert the time that is input by the operator
into a binary number that represents that particular month, day,
hour, etc. This number increases as time elapses. When the time
of year register is read, the software will convert the current
value to the appropriate form for output. At the end of each
year, the software will reset the clock to the beginning of the
year value.

2.8.3 Interval Time Clock

The interval time clock enables the accurate measurement of
variable time intervals. The interval time clock notifies the
processor of a completed time interval via an interrupt. This
hardware feature enables software to perform time dependent
events, accounting, and maintenance of software data and time.

There are three registers required for the operation of the
interval timer. Each of these registers is accessible through the
MTPR and MFPR instructions. Register data is transferred over the
internal data (ID) bus under control of the microprogram. The
following paragraphs provide a brief description of each of the
registers:

Interval Count Register -- This is a 32-bit up counter that
increments at the rate of 1 microsecond per count, when enabled by
the RUN control bit. This register is read only.

Next Interval Register -- This is a 32-bit register that contains

a value to be loaded into the interval count register each time
the count register overflows. This register is write only.

Clock Control Status Register -- This register (Figure 2-93)

contains six bits which include status information, control
functions and maintenance functions.
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3130

08 07 06 05 04 00

L———ERROR

) )
INTERRUPT REQUEST—-—-j
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SINGLE CLOCK
TRANSFER
RUN

TK-1657

Figure 2-93 Interval Clock Control Status Register

The following provides a description of each of the bits in the
control status register: '

Bit

31

87

06

25

24

Name

ERROR

INTERRUPT REQUEST

INTERRUPT ENABLE

SINGLE CLOCK

TRANSFER

RUN

Function

This bit is set when a second overflow
of the interval count register occurs
before the first overflow has been
serviced. It is cleared on power up
and by writing a one to bit 31 of the
control register.

This bit is set when the interval count

register overflows. It is cleared on
power up or by writing a one to bit @7
of the control register.

This bit, when set, allows an interrupt
at IPL 24.

This bit is used as a maintenance aid.
Writing a one to bit @5 will advance
the count register by one. This bit is
always read as a zero.

When a one is written to bit 04, it
causes the contents on the -next
interval register to be transferred to
the interval count register. This
operation can be performed independent
of the state of the run bit. This bit
is always read as a zero. .

This bit, when set, allows the counter
to count. It is cleared on power up

‘and can be read or written under

program control.
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2.8.3.1 Operation -- On power up, all the bits in the clock
control status register are cleared. Since the run bit is
cleared, the counter will not change. The next interval register
is then loaded with a value corresponding to the 2's complement
of the number of microseconds between interrupts. Next, the run,
interrupt enable, and transfer bits are set in the control status
register. This will cause the next interval register to be loaded
into the interval count register and will cause the interval count
register to start counting.

When.the interval count register counts from all ones to the next
state, an interrupt at IPL 24 is requested. At the same time, the

count register is loaded from the next interval register and
counting is continued from the next interval value.

If the interval count register overflows again before the previous
interrupt is serviced, an error flag is set. The hardware will
continue to request an interrupt at IPL 24 and software will clear
the error flag when the interrupt is serviced.
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OPCODE

01
02
03

05
07
08
09

OA
OB
oC
oD
OE
OF

10

11
12

13

14
15
16
17

18
19
1A
1B
1C
1D
1E

1F

21
22
23
24
25

MNEMONIC

HALT
NOP
REI
BPT
RET
RSB
LDPCTX
SVPCTX

CVTPS
CvTsP

INDEX
CRC
PROBER
PROBEW
INSQUE
REMQUE

B8sSBB

BRB
BNEQ, BNEQU

BEQL, BEQLU

BGTR
BLEQ
JsSB
JMP

BGEQ

BLSS

BGTRU
BLEQU

BvC

BvS

BGEQU, BCC

BLSSU, BCS

ADDP4
ADDP6
SUBP4
SUBP6
CVvTPT
MULP

APPENDIX A
OP CODE LISTING

INSTRUCTION

Halt

No operation

Return from exception or interrupt
Break point fault

Return from called procedure
Return from subroutine

Load process context

Save process context

Convert packed to leading separate
numeric

Convert leading separate numeric to
packed

Compute index

Calculate cyclic redundancy check
Probe read access

Probe write access

insert into queue

Remove from queue

Branch to subroutine with byte dis-
placement

Branch with byte displacement
Branch on not equal unsigned, Branch
on not equal

Branch on equal, Branch on equal un-
signed

Branch on greater

Branch on less or equal

Jump to subroutine

Jump

Branch on greater or equal

Branch on less

Branch on greater unsigned

Branch on less or equal unsigned
Branch on overfiow clear

Branch on overfiow set

Branch on greater or equal unsigned,
Branch on carry clear

Branch on less unsigned, Branch on
carry set

Add packed 4 operand

Add packed 6 operand

Subtract packed 4 operand
Subtract packed 6 operand
Convert packed to trailing numeric
Multiply packed




OPCODE

26
27

28
2C
2D
2E
2F

30

31
32
33

35
36
37

39
3A
38

30
3E
3F

41
42
43

45
47

49
4A
48

40
4E
4F

50
51
52

MNEMONIC

cvtTTP
DIvP

MOVC3
CMPC3
SCANC
SPANC
MOVCS
CMPCS
MOVTC
MOVTUC

BSBW

BRW
CVTWL
cviwB
MOvVP
CMPP3
CVTPL
CMPP4

EDITPC
MATCHC
LOoCC
SKPC
MOVZWL
ACBW
MOVAW
PUSHAW

ADDF2
ADDF3
SUBF2
SUBF3
MULF2
MULF3
DIVF2

DIVF3

CVTFB
CVTFW
CVTFL
CVTRFL
CVTBF
CVTWF
CVTLF
ACBF

MOVF
CMPF
MNEGF

INSTRUCTION

Convert trailing numeric to packed
Divide packed

Move character 3 operand
Compare character 3 operand
Scan for character

Span characters

Move character 5 operand
Compare character 5 operand
Move transiated characters
Move translated until character

Branch to subroutine with word dis-
placement

Branch with word displacement
Convert word to long

Convert word to byte

Move packed

Compare packed 3 operand
Convert packed to long

Compare packed 4 operand

Edit packed to character

Match characters

Locate character

Skip character

Move zero-extended word to long
Add compare and branch word
Move address of word

Push address of word

Add floating 2 operand

Add fioating 3 operand
Subtract fioating 2 operand
Subtract floating 3 operand
Muitiply floating 2 operand
Multiply floating 3 operand
Divide floating 2 operand
Divide floating 3 operand

Convert fioat to byte

Convert fioat to word

Convert float to long

Convert rounded float to long
Convert byte to float

Convert word to float

Convert long to float

Add compare and branch floating

Move float

Compare floating
Move negated floating
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OPCODE MNEMONIC INSTRUCTION

53 TSTF Test float

54 EMODF Extended modulus fioating

55 POLYF Evaluate polynomial fioating

56 CVTFD Convert float to double

57 RESERVED to DEC

58 ADAWI Add aligned word interlocked

59 RESERVED to DEC

5A RESERVED to DEC

58 RESERVED to DEC

5C RESERVED to DEC

5D RESERVED to DEC

SE RESERVED to DEC

SF RESERVED to DEC

60 " ADDD2 Add double 2 operand

61 ADDD3 Add double 3 operand

62 'sSuBD2 Subtract double 2 operand

63 sSuBD3 Subtract double 3 operand

64 MULD2 Multiply double 2 operand

65 MULD3 Multiply double 3 operand

66 DIvD2 Divide double 2 operand

67 DIVD3 Divide double 3 operand

68 CcvTDB Convert double to byte

69 CVTDW Convert double to word

6A CvTDL Convert double to long

6B CVTRDL Convert rounded double to long

6C CvTBD Convert byte to double

6D CVTWD Convert word to double

6E CVTLD Convert long to double

6F ACBD Add compare and branch double

70 MOVD Move double

71 CMPD Compare double

72 MNEGD Move negated double

73 TSTD Test double

74 EMODD Extended modulus double

75 © POLYD Evaluate polynomial double

76 CVTDF Convert double to float

77 RESERVED to DEC

78 ASHL Arithmetic shift long

79 ASHQ Arithmetic shift quad

7A EMUL Extended multiply

78 EDIV Extended divide

7C CLRQ, CLRD Clear quad, Clear double

7D MOVQ Move quad

7E MOVAQ, MOVAD Move address of quad, Move address of
" double .

7F PUSHAQ, PUSHAD :us:'oddms of quad, Push address of

ouble
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OPCODE MNEMONIC INSTRUCTION

80 ADDB2 Add byte 2 operand

81 ADDB3 Add byte 3 operand

82 suBB2 Subtract byte 2 operand

83 suss3 Subtract byte 3 operand

84 MULB2 Multiply byte 2 operand

85 MULB3 Multiply byte 3 operand

86 DivB2 Divide byte 2 operand

87 DivB3 Divide byte 3 operand

88 BISB2 Bit set byte 2 operand

89 B8ISB3 Bit set byte 3 operand

8A BICB2 Bit clear byte 2 operand

88 BICB3 Bit clear byte 3 operand

8C XORB2 Exclusive OR byte 2 operand
8D XORB3 Exclusive OR byte 3 operand
8E MNEGB Move negated byte

8F CASEB Case byte

90 MOvB Move byte

91 CMPB Compare byte

92 MCOMB Move complemented byte

93 BITB Bit test byte

94 CLRB Clear byte

95 TSTB Test byte

96 INCB Increment byte

97 DECB Decrement byte

o8 CvTBL Convert byte to long

99 CvTBwW Convert byte to word

9A MOVZBL Move zero-extended byte to long
98 MOVZBW Move zero-extended byte to word
oC ROTL Rotate long

90 ACBB Add compare and branch byte
9E MOVAB Move address of byte

9F PUSHAB Push address of byte

AO ADDW2 Add word 2 operand

Al ADDW3 Add word 3 operand

A2 susw2 Subtract word 2 operand

A3 SUBW3 Subtract word 3 operand

A4 MuULW2 Multiply word 2 operand

A5 MULW3 Multiply word 3 operand

A6 Divw2 Divide word 2 operand

A7 DIivw3 Divide word 3 operand

A8 BISW2 Bit set word 2 operand

A9 BISW3 - Bit set word 3 operand

AA BICW2 Bit clear word 2 operand

AB BICW3 Bit clear word 3 operand

AC XORW2 Exclusive OR word 2 operand
AD XORW3 Exclusive OR word 3 operand

A4




OPCODE

AE
AF

BO
B1
B2
B3

BS
B7

B89
BA
BB
BC
BD
BE
BF

Cco
Cl
c2
Cc3

C5
cé
c7

C9
CA
Ccs
cC
cD
CE
CF

D1
D2
D3

DS
D7
D8
D9

DA
D8

MNEMONIC

MNEGW
CASEW

MOVW
CMPW
MCOMW
BITW
CLRW
TSTW
INCW
DECW

BISPSW
BICPSW
POPR
PUSHR
CHMK
CHME
CHMS
CHMU

ADDL2
ADDL3
suBL2
SUBL3
MuULL2
MULL3
DIvL2

DivL3

BISL2
BISL3
BICL2
BICL3
XORL2
XORL3
MNEGL
CASEL

MOVL
CMPL
MCOML
BITL

CLRL, CLRF
TSTL

INCL

DECL

ADWC
SBWC
MTPR
MFPR

INSTRUCTION

Move negated word
Case word

Move word

Compare word

Move complemented word
Bit test word

Clear word

Test word

Increment word
Decrement word

Bit set processor status word
Bit clear processor status word
Pop registers

Push register .
Change mode to kernel
Change mode to executive
Change mode to supervisor
Change mode to user

Add long 2 operand
Add long 3 operand
Subtract long 2 operand
Subtract long 3 operand
Multiply long 2 operand
Multiply long 3 operand
Divide long 2 operand
Divide long 3 operand

Bit set long 2 operand

Bit set long 3 operand

Bit clear long 2 operand

Bit clear long 3 operand
Exclusive OR long 2 operand
Exclusive OR long 3 operand
Move negated long

Case long

Move long

Compare long

Move complemented long
Bit test long

Clear long, Clear float
Test long

Increment long
Decrement long

Add with carry

Subtract with carry

Move to processor register
Move from processor register
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OPCODE

DD
DE

DF

EO
El
E2

E4
ES

E7

E8
E9

EB
EC
ED
EE
EF

FO
Fl
F2
F3
F4

F5
F6

F8
F9
FA
FB
FC
FD
FE
FF

MNEMONIC

MOVPSL
PUSHL
MOVAL, MOVAF

PUSHAL, PUSHAF

BBS
BBC
B8BSS
88CS
BBSC
BBCC
8BSSs!
8BCClI

BLBS
BLBC
FFS
FFC
CMPV
CMPZV
EXTV
EXTZV

INSV
ACBL
AOBLSS
AOBLEQ
SOBGEQ

SOBGTR
CvTLB
CvTLwW

ASHP

CVTLP
CALLG
CALLS

XFC

ESCD to DEC
ESCE to DEC
ESCF to DEC

INSTRUCTION

Move processor status longword

Push long

Move address of long, Move address of
float

Push address of long, Push address of
float

" Branch on bit set

Branch on bit clear

Branch on bit set and set

Branch on bit clear and set

Branch on bit set and clear

Branch on bit clear and clear

Branch on bit set and set interiocked
Branch on bit clear and clear interlocked

Branch-on low bit set
Branch on low bit clear

Find first set bit

Find first clear bit

Compare field

Compare zero-extended field
Extract field

Extract zero-extended field

Insert field

Add compare and branch long

Add one and branch on less

Add one and branch on less or equal
Subtract one and branch on greater or
equal

Subtract one and branch on greater
Convert long to byte

Convert long to word

Arithmetic shift and round packed
Convert long to packed

Call with general argument list
Call with stack

Extended function call
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