

Protocol Messages

5.3.2 Request ID

The Request ID message consists of:

CODE RESERVED

Where:

CODE (1) B ==

The number 5.

RESERVED (1): =

RECEIPT
NUMBER

Page 81

A one byte field reserved to DEC for future use. Value is O.

RECEIPT NUMBER (2) : B =

A receipt number to identify the request.

5.3.3 System ID

The System ID message consists of:

CODE RESERVED

Where:

CODE (1) B =

The number 7.

RESERVED (1) : =

RECEIPT
NUMBER

OTHER
INFO

A one byte field reserved to DEC for future use. Value is O.

RECEIPT NUMBER (2) : B =

A receipt number to identify the request.

OTHER INFO (*) : =

Further information to describe the system. Consists of zero or
more entries in any order. Each entry consists of:

Where:

INFO
TYPE

INFO
LENGTH

INFO
VALUE

Protocol Messages

INFO TYPE (2) B =

Is the type of information. The values are:

Value

1
2
3
4
5
6
7
8

100
101-199
200
201-299
300
301-399
400
401
402-499

Information

MAINTENANCE VERSION *
FUNCTIONS *
CONSOLE USER **
RESERVATION TIMER **
CONSOLE COMMAND SIZE **
CONSOLE RESPONSE SIZE **
HARDWARE ADDRESS *
SYSTEM TIME
COMMUNICATION DEVICE *
COMMUNICATION DEVICE RELATED
SOFTWARE ID
SOFTWARE ID RELATED
SYSTEM PROCESSOR
SYSTEM PROCESSOR RELATED
DATA LINK
DATA LINK BUFFER SIZE
DATA LINK RELATED

Page 82

* Required field (System ID message only).
** Required field if console carrier available

(FUNCTION bit 5).

INFO LENGTH (1): B =

The number of bytes ln the INFO VALUE field.

INFO VALUE (1-17) =

The value according to INFO TYPE and INFO LENGTH.

Where:

MAINTENANCE VERSION (3) : B =

The maintenance version number. The bytes, in order from
low to high, are version, ECO, and user ECO.

FUNCTIONS (2) : BM =

The maintenance functions currently available through this
channel. The bit meanings are:

Bit Function

o Loop
1 Dump
2 Primary loader (can only load secondary loader)
3 Multi-block loader (can load tertiary loader or

system)

Protocol Messages

4
5
6
7

Boot
Console carrier
Data link counters
Console carrier reservation

CONSOLE USER (6) : B =

Page 83

System address of the system that has the console
reserved. Not present if not applicable. Must be present
if console carrier is available, i.e., FUNCTION bit 5 is
ON. Not valid if the console carrier is not reserved,
i.e., FUNCTION bit 7 is ON.

RESERVATION TIMER (2) : B =

The maximum value, in seconds, of the timer used to clear
unused console reservations. Not present if not
applicable. Must be present if console carrier is
available, i.e., FUNCTION bit 5 is ON.

CONSOLE COMMAND SIZE (2) B =

The maximum size of the console command buffer. Not
present if not applicable. Must be present if console
carrier is available, i.e., FUNCTION bit 5 is ON.

CONSOLE RESPONSE SIZE (2) B =

The maximum size of the console response buffer. Not
present if not applicable. Must be present if console
carrier is available, i.e., FUNCTION bit 5 is ON.

HARDWARE ADDRESS (6) : B =

A hardware established address for this system, relative
to the channel being used.

SYSTEM TIME (10) : B =

A segmented binary system time stamp.
same as defined for the Parameter
Address message.

COMMUNICATION DEVICE (1) B =

The format is the
Load with Transfer

The hardware device type of the channel being used.
Values are in Appendix A.

COMMUNICATION DEVICE RELATED (1-16) =

Information specific to
DEVICE. Not present if
Appendix A.

the particular
not applicable.

COMMUNICATION
Values are in

Protocol Messages Page 84

SOFTWARE ID (C-17) =

The identification of the software the system is supposed
to be running. The format is the same as defined for the
Boot message.

SOFTWARE ID RELATED (1-16): =

Information specific to 'the particular SOFTWARE ID. Not
present if not applicable. Interpretation is specific to
the receiving system (e.g., file specification, which may
vary depending on the type of file server).

SYSTEM PROCESSOR (1) : B =

The type of system processor. Values are in Appendix A.

SYSTEM PROCESSOR RELATED (1-16) =

Information specific to the particular SYSTEM PROCESSOR.
Not present if not applicable. Values are in Appendix A.

DAT A LINK (1) : B =

The type of data link protocol on the channel being used.
Values are in Appendix A.

DATA LINK BUFFER SIZE (2) : B =

The size of the data link buffer. Not present if not
applicable. The default value is 262.

DATA LINK RELATED (1-16) =

Information specific to the
present if not applicable.

particular DATA LINK. Not
Values are in Appendix A.

5.3.4 Request Counters

The Request Counters message consists of:

CODE

Where:

CODE (1) B =

RECEIPT
NUMBER

The number 9.

RECEIPT NUMBER (2) B =

A receipt number to identify the request.

Protocol Messages

5.3.5 Counters

The Counters message consists of:

CODE

Where:

CODE (1) B =

RECEIPT
NUMBER

The number 11.

RECEIPT NUMBER (2) B =

COUNTER
BLOCK

A receipt number to identify the request.

COUNTER BLOCK (*): =

Page 85

A block of counters as defined for the particular data link (see
Appendix B).

5.3.6 Reserve Console

The Reserve Console message consists of:

CODE VERIFICATION

Where:

CODE (1) B =

The number 13.

VERIFICATION (8) : B =

A verification code that must match before the receiving system
can honor the request.

5.3.7 Release Console

The Release Console message consists of:

CODE

Where:

CODE (1) B =

The number 15.

Protocol Messages Page 86

5.3.8 Console Command and Poll

This message is issued by the Console Requester in the command system
and is received by the Console Server in the target system. The
Console Command and Poll message consists of:

Where:

CODE CONTROL
FLAGS

CODE (1) B =

The number 17.

COMMAND
DATA

CONTROL FLAGS (1) : BM =

The control flags
message streams.

bit function

indicate the state of the console
They insure that messages are not lost.

carrier

o Message Number - indicates the current message number. This
is a one bit sequence number of the current Console Requester
command message.

1 Command Break Flag - indicates if the (possibly null) command
data is to be preceded by a break condition in the serial byte
stream. This may take on the value of zero, meaning no break,
or one, meaning there is a break.

COMMAND DATA (*) : =

This is a (possibly null) sequence of bytes to be provided as
input to the receiving system's higher level user of the Console
Server.

5.3.9 Console Response and Acknowledge

This message is issued by the Console Server in the target system in
response to the receipt of a Console Command and Poll message from the
Console Requester in the command system. The Console Response and
Acknowledge message consists of:

CODE CONTROL RESPONSE
FLAGS DATA

Where:

CODE (1) B =

Protocol Messages

The number 19.

CONTROL FLAGS (1) : BM =

The control flags
message streams.

bit function

indicate the state of the console
They insure that messages are not lost.

Page 87

carrIer

o Message Number - indicates the current message number. This
is a one bit sequence number of the current command message
being acknowledged.

1 Command Data Lost Flag - indicates if the console command data
was lost and must be sent again. This may take on the value
of zero, meaning acceptance of the command data, or one,
meaning that the command data was lost.

2 Response Data Lost Flag - indicates if remote console response
data was lost due to data overrun. This may take on the value
of zero, meaning no detection of lost data, or one, meaning
there was lost data.

RESPONSE DATA (*) =

This is a
input to
Requester.

(possibly null) sequence of bytes to be provided as
the receiving system's higher level user of the Console

APPENDIX A

PREDEFINED VALUES

This appendix contains the predefined values for various maintenance
operation parameters. These values are referenced in the interfaces
and in the message definitions. Each parameter has a description to
be used in the interface calls and an actual value to be used in
protocol messages.

New values are defined on an as needed basis.

A.l Communication Devices

Value Name Device

0 DP
1 UNA
2 DU
3 CNA
4 DL
5 QNA
6 DQ
7 CI
8 DA
9 PCL

10 DUP
12 DMC
14 DN
16 DLV

18 DMP
20 DTE
22 DV
24 DZ
28 KDP
30 KDZ
32 KL
34 DMV
36 DPV
38 'DMF
40 DMR

DPll-DA (OBSOLETE)
DEUNA multiaccess communication link
DUll-DA synchronous line interface

DLll-C, -E or -WA asynchronous line interface

DQll-DA (OBSOLETE)
Computer Interconnect interface
DAlI-B or -AL UNIBUS link
PCL1I-B multiple CPU link
DUP11-DA synchronous line interface
DMCII-DA/AR,\ -FA/AR, -MA/AL or -MD/AL interprocessor link
DNII-BA or -AA automatic calling unit
DLVlI-E, -F, -J, MXVII-A or - B asynchronous line

interface
DMPll multipoint interprocessor link
DTE20 PDP-II to KLIO interface
DVll-AA/BA synchronous line multiplexer
DZII-A, -B, -C, or -D asynchronous line multiplexer
KMCll/DUPIl-DA synchronous line multiplexer
KMCll/DZll-A, -B, -C, or -D asynchronous line multiplexer
KL8-J (OBSOLETE)
DMVll interprocessor link
DPVll synchronous line interface
DMF-32 synchronous line unit
DMRll-AA, -AB, -AC, or -AE interprocessor link

Predefined Values Page A-2

42 KMY KMSII-PX synchronous line interface with X.25 level 2
microcode

44 KMX KMSIl-BD/BE synchronous line interface with X.25 level 2
microcode

A.2 Data Links

The data link type values are:

Value

1
2
3

Meaning

Ethernet
DDCMP
LAPB (frame level of X.25)

A.3 System Processors

System processor type values are:

Value

1
2
3

Meaning

PDP-II (UNIBUS)
Communication Server
Professional

APPENDIX B

DATA LINK SPECIFIC INFORMATION

This appendix contains information necessary to relate specific data
link types to the maintenance operations.

B.l DDCMP

The Digital Data Communication Message Protocol (DDCMP) Data Link is a
point-to-point channel and allows exclusive maintenance operation in
its maintenance mode. It does not require message padding.

B.2 LAPB

The LAPB Data Link is the frame level of X.25. It is a point-to-point
channel and allows exclusive maintenance operation for loopback only.
It does not require message padding.

B.3 Ethernet

The Ethernet Data Link is the Digital Equipment Corporation
implementation of the inter-company Ethernet Data Link. It allows
concurrent maintenance operation and is a multiaccess channel. As
such it has specific protocol types and multicast addresses that go
with it. It requires message padding.

Refer to the the Ethernet Product Architecture Specification and the
DNA Ethernet Data Link Architectural Specification for specific
functions and requirements. For example, the Product Architecture
Specification requires that the Loop Server and the Console Server
cannot be off while the data link is on.

Data Link Specific Information

The protocol types are:

Value Protocol

90-00
60-01
60-02

Loopback
Dump/Load
Remote Console

The multicast addresses are:

Address

CF-OO-OO-OO-OO-OO
AB-OO-OO-OI-OO-OO
AB-OO-OO-02-00-00

Group

Loopback assistance
Dump/Load assistance
Remote Console

Page B-2

Ethernet counters can be read through the Remote Console. The
counters are defined in the DNA Ethernet Data Link specification. The
counters are a fixed format block with each value as indicated below.

Byte
Length Counter Value

2 Seconds since last zeroed
4 Bytes received
4 Bytes sent
4 Frames received
4 Frames sent
4 Multicast bytes received
4 Multicast frames received
4 Frames sent, initially deferred
4 Frames sent, single collision
4 Frames sent, mUltiple collisions
2 Send failure
2 Send failure reason bitmap
2 Receive failure
2 Receive failure reason bitmap
2 Unrecognized frame destination
2 Data overrun
2 System buffer unavailable
2 User buffer unavailable

The bit meanings for the Send failure reason bitmap are:

Bit Reason

o Excessive collisions
1 Carrier check failed
2 Short circuit
3 Open circuit
4 Frame too long
5 Remote failure to defer

Data Link Specific Information Page B-3

The bit meanings for the data errors inbound reason bitmap are:

Bit Reason

o Block check error
I Framing error
2 Frame too long

APPENDIX C

IMPLEMENTATION SPECIFIC DUMP/LOAD CHARACTERISTICS

This appendix documents characteristics of PDP-II dump/load programs
existing as of the date of this specification.

C.l Secondary Loader

The secondary loader is sent as a single Memory Load with Transfer
Address message as normally required. In addition to this
requirement, it must be loaded and started at location 6. Current
secondary loaders are between 400 and 600 bytes in length, depending
upon the device type used. They use the stack address set up by the
primary loader. For current loaders this will be between 17400(octal)
and l7776(octal). The secondary loader assigns its buffer space below
the stack. The secondary loader accepts Memory Load with and without
Transfer Address messages. It is, therefore, capable of doing
multi-block loads into absolute addresses without memory management.
It requests a tertiary loader to be loaded.

The DMP-ll and DMV-ll do not set up the stack pointer or RI as
described. For those devices, Rl contains the device unit number.

C.2 Tertiary Loader

The tertiary loader IS loaded by the secondary in a multi-block load
starting at location 10000(octal). It will run with memory management
on if it exists on the system. The tertiary loader moves itself to
the top of physical memory and assigns its stack and buffer space just
below itself. It is, therefore, capable of multi-block loads from
location 0 up to its buffer address, usually the last 1-2K words of
physical memory. It requests the operating system to be loaded. The
current tertiary loaders do not specify any specific operating system.
The choice of system to send is established by prior agreement or by
command at the host system.

APPENDIX D

REVISION HISTORY

This appendix provides a list of the major changes that have been made
to this specification.

D.l Changes from Version 1.1 to Version 2.0

1. Removed all references to MOP being used directly to
non-adjacent systems over DECnet links. The NICE protocol
performs MOP-like functions within DECnet, using actual MOP
protocol only over a physical link.

2. Decoupled MOP from DDCMP maintenance mode. The protocol
specifies the requirements of a link control procedure to be
used with MOP. DDCMP maintenance mode is one such procedure.

3. Deleted the following messages not needed in MOP. These are
now handled by NICE. Code 20, Examine data by name; code 22,
Clear data by name; and code 26, Examined data by name.

4. Clarified the description of the fields in all MOP messages.

5.

Clarified and expanded the operational details of MOP and
added a state table for operation.

Added detailed description of
link control procedure to
description of the interface,
to that procedure.

the requirements of the data
be used by MOP and a detailed
set of commands and responses,

6. Added VAX and DECSYSTEM 10/20 information in message formats
where necessary.

7. Changed message 8, Request MOP secondary mode program, to
Request Program. It is now used to request all program loads
in MOP, not just the secondary program. The STADDR field is
removed and replaced by a MOP version number field. Added
DTE20 to DEVTYPE field. PGMTYPE field is changed and SOFTID
is added.

Revision History Page D-2

8. Changed message 10, Request memory load, to remove NODE and
SOFTID, function now part of message 8 described above.
Added an ERROR field to return any errors on previous load.

9. Changed message 12, Secondary mode running, to MOP mode
running. Removed STADDR and replaced with MOP version
number. Added a FEATURES field to describe the MOP features
a node supports.

10. Added a new message, code 20, Parameter load with transfer
address. This message is used to load a parameter block
before transferring control to a just loaded program.

11. Added a detailed description of primary mode and the
operation of loading the secondary program.

D.2 Changes from Version 2.0 to Version 2.1.0

1. Added Looped Data Message as response to a Loopback Test
Message.

2. Added host node number parameter to Parameter Load with
Transfer Address Message.

3. Added notification from DDCMP that a start was received while
in maintenance mode.

D.3 Changes from Version 2.1.0 to Version 3.0.0

1. Expanded capabilities to cover data links which support
mUltiple concurrent protocols and multiaccess channels (e.g.
Ethernet). Changed references .to "DDCMP" to "data link" to
cover the more general scope.

2. Generally expanded the documentation. Added user and network
management interface sections.

3. Divided functionality into three distinct classes (protocol
types): Loop Test, Dump/Load, and Remote Console.

4. Added Dump Complete and Assistance messages to the Dump/Load
protocol.

5. Changed Enter MOP Mode message to Boot message. Added
Processor, Control Device ID, and Software ID fields.

Revision History Page D-3

6. Added Request ID, System ID, Request Counters, Counters,
Reserve Console, Release Console, Console Command and Poll,
and Console Respond and Acknowledge messages to the Remote
Console protocol.

7. Added Reply and Forward Data messages to the Loop Test
protocol. These are for multiaccess channels. The V2.1 Loop
messages are still available for point-to-point channels.

8. Replaced Load/Dump state tables with procedural descriptions.

APPENDIX E

ETHERNET LOOP TESTING

E.l Introduction

The Ethernet Loop Testing Protocol provides minimum testing capability
of comrnunlcation between stations on an Ethernet. It is the only
Client Layer protocol specified in the Ethernet specification. Using
these procedures, the Network Managment System is given a minimum set
of functions which can be used to determine network configuration,
station addresses, and stations on the Ethernet with the ability to
communicate.

Some support of loop testing functions is required on all Ethernet
stations, as specified in the .section on Conformance Requirements.

E.l.l Goals

The goals of the Ethernet Loop Testing Protocol are:

1. Provide for all forms of multi-station loop test that are
necessary to diagnose a station's ability to communicate.

2. Allow each station to assume the responsibility to diagnose
its own ability to communicate.

3. Allow a network management node to diagnose some other
station's ability to communicate.

4. Minimize processing and memory requirements, particularly in
stations other than the executing station.

E.l.2 Loop Testing Functions

A station using the Loop Test Protocol can ascertain the following:

Ethernet Loop Testing Page E-2

1. The ability to communicate with a specific remote station.

2. The ability to communicate with some remote station.

3. The ability of a specific third party station to communicate
with a specific remote station.

4. with the help of a third party station, the ability to hear or
be heard by a specific station.

E.l.3 Functional Model

The Ethernet Loop Testing Protocol is composed of two modules, the
Loop Requester and the Loop Server. Although these two modules are
Client Layer entities, some services not included by the Data Link
Layer are also required. A minimum Client Layer communication
service, which lies between the Data Link Layer and the two modules
above, is needed to provide simple success/fail transmit and receive
services, as well as protocol type demultiplexing. Thus, the abstract
Ethernet interface assumed in this description is of a slightly higher
level than the Data Link to Client Layer interface.

+--------------+
I User Modules I
+--------------+

+---------+
V I

+-----------+--------+ I
I Loop I Loop 1<--+
I Requester 1 Server 1

+-----------+--------+

+---------+

V
+---------------+
1 Communication I

I Service I
+---------------+
• • • • I • • •

V
+------------+
I Ethernet I
1 Data Link 1

+------------+

Client
Layer

Data
Link
Layer

The active end of the loop testing communication link is the Loop
Requester module. It contains features which establish and control
the loop communications.

Ethernet Loop Testing Page E-3

Every Ethernet station must implement the Loop Server module. This
module contains procedures which respond to Loop Requester inquiries
and performs general communications service for remote Loop Requester
modules for system tests and diagnostics.

The relationship between the various modules are shown in the figure.
Vertical arrows indicate flow of control at data interfaces. The
horizontal arrow indicates control at a network management interface.

E.l.4 Conformance Requirements

In order to guarantee the availability of these functions and to
provide for communication checking by a network management station,
all Ethernet stations must implement the Loop Server.

The Loop Server receives datagrams addressed to Ethernet physical
addresses, the broadcast address, and, optio~ally, the loopback
assistance multicast address. The Loop Server 1S not required to
receive datagrams addressed to any other multicast address.

Systems may implement the Loop Requester as desired. The allowed
range of functions is between none at all to the full capability
specified below. However, those stations that do not provide the full
interface capability, proportionately limit their capacity for
self-diagnosis and become more dependent on some centralized test
facility.

E.2 Interfaces

This section describes the Loop Test functions using Pascal as a
notational technique. These Pascal descriptions are to be understood
as abstract, functional representations. Actual implementations may
vary, for example in synChronization techniques, as long as they
provide the same functions.

The functional descriptions use the following common declarations:

const
addressSize = 48; {48 bit address = 6 octets}
dataSize = 12000; {12000 bit data field = 1500 octets}
receiptSize = 16; {16 bit receipt = 2 octets}

type
Bit = 0 .. 1;
AddressValue = array [l .• addressSize] of Bit;
DataValue = array [l .. dataSize] of Bit;
BufferValue = record {A general purpose buffer}

BufferMaximum: O .• dataSize; {Buffer maximum contents}
BufferLength: O •• dataSize; {Buffer actual contents}
BufferData: array [l •• dataSize] of Bit; {Buffer contents}
end;

Ethernet Loop Testing Page E-4

ReceiptValue = array [l .. receiptSize] of Bit;

E.2.1 Data Interface

This' section describes the data communication functions available to
the user. These functions are the interface to the Loop Requester.
There is no data interface to the" Loop Server.

The Loop Requester module provides three functions and one procedure
as an interface for user module loop testing services.

Functions:
LoopDirect LoopAssisted Looppoll

Procedure:
LoopAbort

E.2.1.1 LoopDirect

The LoopDirect function is used to determine if direct communication
with a remote station is possible.

function LoopDirect (
remoteAddress: Addressvalue;
transmitBuffer: BufferValue;
var receiptNumber: ReceiptValue;
var receiveBuffer: BufferValuel: LoopDirectStatus;

type LoopDirectStatus = (accepted,wrongState);

With the following definitions:

remoteAddress - the identification of the station with which
communication is to be checked. The address can be a multicast
address, in which case success is defined as a response from any
station in the multicast group. If no address is specified, the
loopback assistant g~oup multicast address is used.

transmitBuffer - a buffer containing the data to be looped.

receiptNumber - the request identification used in LoopPoll or
LoopAbort to identify this request.

receiveBuffer - an optional buffer to contain the looped back
data. If no buffer is supplied (i.e. BufferMaximum = a), the
looped back data is not returned to the caller.

LoopDirectStatus - the status of the request. One of:

, accepted - the loop will be attempted.

Ethernet Loop Testing Page E-5

wrongState - the data link is in a state where a loop cannot
be done.

E.2.l.2 LoopAssisted

The LoopAssisted function is used by a station to
station in the local network can communicate with
station. This may be used if attempts at direct
failed. Loop testing assistance is obtained
function:

function LoopAssisted (
remoteAddress: AddressValue;
assistantAddress: AddressValue;
assistanceLevel: (transmit,receive,full);
transmitBuffer: BufferValue;
var receiptNumber: ReceiptValue;

determine if some
the specified remote

communication have
by a call to the

var receiveBuffer: BufferValue): LoopAssistedStatus;

type LoopAssistedStatus =

(accepted,wrongState, invalidRemote, invalidAssistant};

With the following definitions:

remoteAddress the
station of the test.

identification of the final destination
The address cannot be a multicast address.

assistantAddress - the identification of the third party station
to assist in the test. To avoid undesirable levels of multicast
traffic, the address cannot be a multicast address.

assistanceLevel - the amount of assistance to be provided, one of:

transmit - the assistant station is only to relay the request.
the reply is to be returned from the station possessing the
remoteAddress.

receive - the assistant station is only to
the request is to be sent to the
remoteAddress.

relay the reply,
station with the

full - the assistant station is to relay both request and
reply.

transmitBuffer - a buffer containing the data to loop.

receiptNumber - the request identification used in the LoopPoll or
LoopAbort function to identify this request.

receiveBuffer - an optional buffer to contain the looped back
data. If no buffer is supplied (i.e. BufferMaximum = 0), the
looped back data is not returned to the caller.

Ethernet Loop Testing Page E-6

LoopAssistedStatus - the status of the request. One of:

accepted - the loop will be attempted.

wrongState - the data link is not in a state where a loop can
be done.

invalidRemote
address.

the destination-address was a multicast

invalidAssistant
address.

the assistant-address was a multicast

E.2.1.3 LoopPoll

The LoopPoll function IS used to poll for completion of a LoopDirect
or LoopAssisted.

function LoopPoll
receiptNumber: ReceiptValue;
var remoteAddress: AddressValue}: LoopPollStatus;

type LoopPollStatus =

(notComplete,success,compareError,transmitFailed,

communicationError);

With the following definitions:

receiptNumber the request identification assigned to this
request by the LoopDirect or LoopAssisted function.

remoteAddress - the identification of the remote station that
satisfied the request. For LoopAssisted with transmit assistance,
this is the remote station address. For LoopAssisted with receive
or full assistance, it is the assistant station address.

LoOpPollStatus - the status of the operation. One of:

notComplete - the loop is not yet done.

success - the data came back correctly.

compareError - the data came back, but it did not match what
was sent.

transmitFailed - the local transmitter could not send the
initial message.

communicationError - no response was received.
initial message or the response did not arrive.

Either the

Ethernet Loop Testing Page E-7

E.2.1.4 LoopAbort

The LoopAbort procedure is used to abort a LoopDirect or LoopAssisted
when, for example, the user decides that the reply has taken too long.

procedure LoopAbort (receiptNumber: ReceiptValue)~

with the following definition:

receiptNumber the request identification assigned to this
request by the LoopDirect or LoopAssisted function.

E.2.2 Network Management Interface

This section describes the Network Management control and observation
functions. These functions interface to the Loop Server. There are
no Network Management functions for the Loop Requester.

E.2.2.1 EnableServer

The EnableServer procedure is used to allow Loop Server operation.

procedure EnableServer;

E.2.2.2 DisableServer

The DisableServer procedure 1S used to stop Loop Server operation.

procedure DisableServer;

E.2.2.3 EnableAssistance

The EnableAssistance procedure is used to allow the Loop Server to
listen to the loopback assistance multicast address.

procedure EnableAssistance;

E.2.2.4 DisableAssistance

The DisableAssistance procedure is used to stop the Loop Server from
listening to the loopback assistance multicast address.

procedure DisableAssistance~

Ethernet Loop Testing Page E-8

E.2.2.5 ReadStatus

The ReadStatus procedure is used to read the status of the Loop
server.

procedure ReadStatus (
Ivar serverState: (on,off);
var assistanceState: (on,off));

With the following definit10ns:

serverState - the state of the Loop Server.

assistanceState - the state of the loop assistance feature, i.e.
determines if station IS listening for loopback assistance
multicast address.

E.3 Loop Test Examples

The following examples address the application of the Loop Test
functions. They are intended as examples of how a higher level
process can use the facilities. They are intended neither as a
specification for how they must be used nor as an exhaustive test
script.

In the examples, no account is taken of the fact that the Loop Test
functions make only one attempt to transmit a message. To increase
the reliability of the tests, each interface function that fails due
to a communication error should be retried enough times to lessen the
probability that an intermittent error occurred.

E.3.l Local Control Test Example

In this case, a station finds itself unable to communicate with
other station that it has reason to believe should be available.
following test script can be used by the station to check out
problem itself.

some
The
the

First, LoopDirect is invoked with remoteAddress set at the correct
address of the specific remote station. If this test succeeds, the
communication is possible and the problem may have been either
intermittent, the remote station is down, or there is a problem with
message length or data pattern. Different message lengths and/or data
patterns could then be tried.

If LoopDirect results in a return indicating failure, next invoke
LoopAssisted, using some other node as assistantAddress (if no
potential assistant is known, use LoopDirect with no remoteAddress to
find a member of the loopback assistance multicast group). If
LoopAssisted fails, then the assistant cannot communicate with the
remote node, either. If a LoopDirect was successfully used to find an

Ethernet Loop Testing Page E-9

assistant, the remote station is probably down. If no communication
with the multicast assistant group is possible, then the last resort
is a LoopDirect to the general broadcast address. If this fails then
either no one else is turned on or the local station is broken. If it
succeeds, it is again most likely that the remote station is down.

If some loopback assistant station can communicate with the remote
node but the local station cannot, the local station can then test for
the direction in which communication does not work. The LoopAssisted
function, using the assistant node that responded previously as the
assistant, can be used to detect either transmit or receive problems.
By repeating the above test with different remote stations, it can be
determined whether the local station or the remote station is at
fault, thus isolating the problem to a particular transmitter or
receiver.

When a station finds itself unable to communicate, it can report this
in whatever high level way is available. An operator or control
center can then respond by attempting to isolate and repair the
problem.

E.3.2 Remote Control Test Example

When a control center receives a report that a station cannot
communicate properly, it Cqn use the Loop Testing functions to
investigate the problem. It can first diagnose its own ability to
communicate with the station. If this communication appears to work,
the control center can similarly check its ability to communicate with
the remote station that the reporting station could not reach.

If the control center can communicate with both stations, it can then
use LoopAssisted, full assistance, with one of the nodes as assistant
and the other as remote to see if they can communicate. Similarly it
can use transmit and receive assistance to determine which direction
is a problem.

Similar checks using other stations can be used to isolate the problem
to a particular transmitter or receiver.

E.4 Operation

This section describes the operation of the Loop Test Server and
Requester.

Loop Test operation does not depend on particular stations being able
to receive multicast messages. Those stations willing to volunteer as
loop testing assistants respond to multicast address
CF-OO-OO-OO-OO-OO, and are known as the loopback assistance multicast
group.

Ethernet Loop Testing Page E-IO

In the interests of simplicity and efficiency, loopback operation and
message formats are designed to meet the following requirements:

1. All fields begin on 16-bit boundaries.

2. Progressive operations on the same message (e.g.
back) do not change the message size.

looping it

The general form of operation is that different loopback message types
are encapsulated within one another. The first field, called the skip
count, in all messages indicates how many octets to skip after the
skip count to find the message type. When a message is processed, the
processing system updates the skip count so that the next system will
process the next encapsulated message. Note that in order to meet the
16-bit boundary requirement, the skip count is always an even number.

The Loop Test protocol uses protocol type 90-00.

The operational descriptions assume the following Loop Test protocol
messages.

1. Reply - a message identifiable as a response to some request.

2. Forward Data - A message whose data portion is forwarded to
another station.

E.4.1 Loop Server

The Loo~ Server always keeps a receive pending while the data link is
turned on. Whenever a receive completes. it is processed and another
receive posted. For purposes of not missing messages, it may be
necessary to keep more than one receive posted, although this is not
required.

In order to help bound the time a test can take, the Loop Server must
respond to the data link within one second of the time it receives a
valid message.

The received message is processed according to function code:

1. Forward Data message.

The skip count is increased by the length of the function code
and forward address. If the forward address is a multicast
address, the message is ignored. Otherwise, the message is
transmitted to the forward address.

Ethernet Loop Testing Page E-ll

2. Unrecognized function 26de.

The message is ignored.

In order to provide maximum problem diagnosis capabilities,
Servers must always attempt to recejv~ Ethernet maximum
messages.

E.4.2 Loop Requester

Loop
sized

The Loop Requester uses receipt numbers to identify requests both back
to the user and in protocol messages. When the system is initialized,
the next available receipt number is set to a random value. It 1S

then incremented each time one is used.

E.4.2.l LoopDirect Function

A receipt number is assigned and the state of the operation is set to
"not complete". The data, provided via transmitBuffer, is transmitted
to the destination station, identified by remoteAddress, as a Reply
message encapsulated in a Forward Data message with the local station
as the forwarding address. If the trans.nit is not accepted, the error
code 1S returned and the receipt number marked complete. If the
transmit succeeded, a receive is p~sted. Note that in some
implementations it may be necessary to post the receive first to avoid
a race between the posting of the receive and the receipt of the
message.

The receive is satisfied by the first Reply message received with the
correct receipt number. Additional replies (as in the case of a
LoopDirect to the loopback assistance multicast group) are
automatically ignored since there is no longer an outstanding request
with the receipt number. When the transmit and receive are both
complete, if they were successful the received data is compared to the
transmitted data, exclusive of loop protocol overhead. If they do not
match or the receive or transmit failed, the appropriate error is
recorded; otherwise, success and the responding station address are
recorded.

E.4.2.2 LoopAssisted Function

If the request is for receive assistance, and the assistant address is
a multicast address, an invalid assistant address error is returned;
otherwise, a receipt number is taken and the state of the operation is
set to "not complete". The data is put into the form of a Reply
message and encapsulated in a Forward Data message with the local
station address as the forward address. The rest of the operation
depends on the assistance level requested:

Ethernet Loop Testing Page E-12

1. Transmit assistance.

The message so far is encapsulated in a Forward
with the remote station as the forward address.
message is then sent to the assistant address.

Data message
The resulting

2. Receive assistance.

The message so far is encapsulated in a Forward Data message
with the assistant address as the forward address. The
resulting message is then sent to the remote station.

3. Full assistance.

The message so far is encapsulated in a Forward Data
with the assistant address as the forward address.
turn, is encapsulated in a Forward Data message
remote station address as the forward address. The
message is then sent to the assistant address.

message,
This, in

with the
resulting

Receive processing is the same as was described for LoopDirect.

E.4.2.3 LoopPoll Function

The LoopPoll function returns the state of the operation. If the
state is success:ul completion, the responding station address is also
returned. If a receiveBuffer was provided on the initial request, the
received message is returned, truncated if it will not fit.

E.4.2.4 LoopAbort Function

The LoopAbort procedure simply marks the receiptNumber as aborted if
it is not already complete.

E.5 Protocol Messages

This section defines the format of the Loop Test protocol messages.
The descriptive and transmission conventions are the same as for the
body of the Ethernet specification.

The Loop Test protocol contains the following messages:

Function
Code

1
2

Function

Reply
Forward Data

Ethernet Loop Testing Page E-13

E.5.1 Reply Message

This message is recognized as a looped reply. The message format is:

\<--- 1 octet --->\

+-----------------+
skip 2 octets

count
+-----------------+

. octets to skip
according to skip count octets
skip count

+-----------------+
function 2 octets

1
+-----------------+

receipt
number

+-----------------+

data

+-----------------+

E.5.2 Forward Data Message

2 octets

remainder

This message is used to get a message forwarded to some other station.
Its format is:

Ethernet Loop Testing

1<--- 1 octet --->1

+-----------------+
skip 2 octets

count
+-----------------+

. octets to skip
according to skip count octets
skip count

+-----------------+
function 2 octets

2
+-----------------+

forward
address

+-----------------+

data

+-----------------+

6 octets

remainder

Page E-14

DECnet Digital NetworK ArcOiteclure t'na15., I Y

Maintenance Operations Functional Specification
AA-X436A-TK

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

o
o
o
o
o
o Other (please specify) __________________________ _

Name ____________________________________ Date __________________________________ __

Organ~ation __ _

Street __ ___

City __________________ __ State __________ Zip Code _______ _

or
Country

- - - - -Do Not Tear - Fold Here and Tape - - - - - -

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
1925 ANDOVER STREET TW/E07
TEWKSBURY, MASSACHUSETTS 01876

I
-----l

No Postage

Necessary

if Mailed In the

United States

- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - -

